首页> 外文期刊>Dielectrics and Electrical Insulation, IEEE Transactions on >Covalently modified organic nanoplatelets and their use in polymer film capacitors with high dielectric breakdown and wide temperature operation
【24h】

Covalently modified organic nanoplatelets and their use in polymer film capacitors with high dielectric breakdown and wide temperature operation

机译:共价修饰的有机纳米片及其在高介电击穿和宽温度工作范围的聚合物薄膜电容器中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Organic-inorganic nanoplatelets in the form of nanoscale titanium phenyl phosphonate (nano-Ti(PPA)2) were synthesized with dimensions of 100-250 nm by 5-10 nm. Upon incorporation into fluorene polyester (FPE) at low loadings (0.3 to 3 wt%), the resulting polymer nanocomposite film exhibited significant gains in breakdown field over the neat polymer film, with gains of 37% at 20 u000b0;C, 39% at 150 u000b0;C, and 18% at 275 u000b0;C. The increase in breakdown field was much greater than expected based on previous literature reports for incorporation of spherical SiO2 or TiO2, and it is likely that these benefits arise from the high aspect ratio of the nano-Ti(PPA)2 and the inherent organic functionalization of the material. Dielectric constant was unchanged within experimental error, and loss tangent decreased slightly at higher temperatures, upon the addition of the filler. Material energy densities of the resulting nanocomposite film were calculated to range from 3.6 J/cm3 at 150 u000b0;C to 1.6 J/cm3 at 275 u000b0;C, which are the highest known values obtained for a polymer-based capacitor material that can operate at these high temperatures.
机译:合成了纳米级苯基膦酸钛(nano-Ti(PPA) 2 )形式的有机-无机纳米片,其尺寸为100-250 nm x 5-10 nm。在低负载量(0.3至3 wt%)掺入芴聚酯(FPE)中后,所得的聚合物纳米复合材料薄膜在击穿场上的表现优于纯聚合物薄膜,在20 u000b0时增加了37%;在30 ub时增加了39%。 150 u000b0; C,在275 u000b0; C时为18%。击穿场的增加远大于根据先前关于球形SiO 2 或TiO 2 掺入的文献报道的预期,这些好处可能是由于高Ti(PPA) 2 的长径比和材料固有的有机功能化。添加填料后,介电常数在实验误差范围内未变,损耗角正切在较高温度下略有下降。计算得到的纳米复合膜的材料能量密度范围为150 u000b0; C时的3.6 J / cm 3 到275 u000b0; C时的1.6 J / cm 3 ,是可以在这些高温下工作的基于聚合物的电容器材料的已知最高值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号