...
首页> 外文期刊>BMC Bioinformatics >Identification, visualization, statistical analysis and mathematical modeling of high-feedback loops in gene regulatory networks
【24h】

Identification, visualization, statistical analysis and mathematical modeling of high-feedback loops in gene regulatory networks

机译:基因监管网络中高反馈回路的识别,可视化,统计分析和数学建模

获取原文
           

摘要

Feedback loops in gene regulatory networks play pivotal roles in governing functional dynamics of cells. Systems approaches demonstrated characteristic dynamical features, including multistability and oscillation, of positive and negative feedback loops. Recent experiments and theories have implicated highly interconnected feedback loops (high-feedback loops) in additional nonintuitive functions, such as controlling cell differentiation rate and multistep cell lineage progression. However, it remains challenging to identify and visualize high-feedback loops in complex gene regulatory networks due to the myriad of ways in which the loops can be combined. Furthermore, it is unclear whether the high-feedback loop structures with these potential functions are widespread in biological systems. Finally, it remains challenging to understand diverse dynamical features, such as high-order multistability and oscillation, generated by individual networks containing high-feedback loops. To address these problems, we developed HiLoop, a toolkit that enables discovery, visualization, and analysis of several types of high-feedback loops in large biological networks. HiLoop not only extracts high-feedback structures and visualize them in intuitive ways, but also quantifies the enrichment of overrepresented structures. Through random parameterization of mathematical models derived from target networks, HiLoop presents characteristic features of the underlying systems, including complex multistability and oscillations, in a unifying framework. Using HiLoop, we were able to analyze realistic gene regulatory networks containing dozens to hundreds of genes, and to identify many small high-feedback systems. We found more than a 100 human transcription factors involved in high-feedback loops that were not studied previously. In addition, HiLoop enabled the discovery of an enrichment of high feedback in pathways related to epithelial-mesenchymal transition. HiLoop makes the study of complex networks accessible without significant computational demands. It can serve as a hypothesis generator through identification and modeling of high-feedback subnetworks, or as a quantification method for motif enrichment analysis. As an example of discovery, we found that multistep cell lineage progression may be driven by either specific instances of high-feedback loops with sparse appearances, or generally enriched topologies in gene regulatory networks. We expect HiLoop’s usefulness to increase as experimental data of regulatory networks accumulate. Code is freely available for use or extension at https://github.com/BenNordick/HiLoop .
机译:基因监管网络中的反馈循环在控制细胞功能动态中的关键作用。系统方法展示了特征动态特征,包括多功率和振荡,正极和负反馈环。最近的实验和理论在额外的非完天功能中具有涉及高度互连的反馈回路(高反馈循环),例如控制细胞分化率和多步细胞谱系进展。然而,由于循环可以组合的多种方式,在复杂的基因监管网络中识别和可视化高反馈回路仍然具有挑战性。此外,目前尚不清楚具有这些潜在功能的高反馈环结构是否在生物系统中是广泛的。最后,了解多种动态特征,例如由包含高反馈环路的各个网络生成的多阶的多功能性和振荡等多种动态特征仍然具有挑战性。为了解决这些问题,我们开发了一个工具包,它能够发现,可视化和分析大型生物网络中的几种类型的高反馈循环。 HILOOP不仅提取高反馈结构并以直观的方式可视化它们,而且还量化了超人级结构的富集。通过从目标网络导出的数学模型的随机参数化,HILOOP在统一框架中呈现底层系统的特征特征,包括复杂的多个能力和振荡。使用HILOOP,我们能够分析含有数十个基因的现实基因调节网络,并识别许多小型高反馈系统。我们发现了100多个人类转录因子,涉及之前未研究过的高反馈循环。此外,HILOOP能够发现与上皮间充质转换相关的途径中的高反馈的富集。 HILOOP使复杂网络的研究无需显着计算需求。它可以通过识别和建模高反馈子网或作为基序富集分析的量化方法作为假设发生器。作为发现的示例,我们发现多步电池谱系进展可以由具有稀疏外观的特定实例的特定实例驱动,或者在基因调节网络中的大致富集拓扑。我们预计HILOOP随着监管网络的实验数据增加而增加的有用性。代码可在https://github.com/bennordick/hilep中自由使用或扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号