...
首页> 外文期刊>PLoS Computational Biology >The influence of the crowding assumptions in biofilm simulations
【24h】

The influence of the crowding assumptions in biofilm simulations

机译:在生物膜模拟中拥挤假设的影响

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Microorganisms are frequently organized into crowded structures that affect the nutrients diffusion. This reduction in metabolite diffusion could modify the microbial dynamics, meaning that computational methods for studying microbial systems need accurate ways to model the crowding conditions. We previously developed a computational framework, termed CROMICS, that incorporates the effect of the (time-dependent) crowding conditions on the spatio-temporal modeling of microbial communities, and we used it to demonstrate the crowding influence on the community dynamics. To further identify scenarios where crowding should be considered in microbial modeling, we herein applied and extended CROMICS to simulate several environmental conditions that could potentially boost or dampen the crowding influence in biofilms. We explore whether the nutrient supply (rich- or low-nutrient media), the cell-packing configuration (square or hexagonal spherical cell arrangement), or the cell growing conditions (planktonic state or biofilm) modify the crowding influence on the growth of Escherichia coli. Our results indicate that the growth rate, the abundance and appearance time of different cell phenotypes as well as the amount of by-products secreted to the medium are sensitive to some extent to the local crowding conditions in all scenarios tested, except in rich-nutrient media. Crowding conditions enhance the formation of nutrient gradient in biofilms, but its effect is only appreciated when cell metabolism is controlled by the nutrient limitation. Thus, as soon as biomass (and/or any other extracellular macromolecule) accumulates in a region, and cells occupy more than 14% of the volume fraction, the crowding effect must not be underestimated, as the microbial dynamics start to deviate from the ideal/expected behaviour that assumes volumeless cells or when a homogeneous (reduced) diffusion is applied in the simulation. The modeling and simulation of the interplay between the species diversity (cell shape and metabolism) and the environmental conditions (nutrient quality, crowding conditions) can help to design effective strategies for the optimization and control of microbial systems.
机译:微生物经常组织成影响营养素扩散的拥挤结构。这种降低代谢物扩散可以修改微生物动力学,这意味着用于研究微生物系统的计算方法需要准确的方法来模拟拥挤的条件。我们以前开发了一个计算框架,称为Cromics,它融合了(时间依赖)拥挤条件对微生物社区的时空建模的影响,我们用它来展示对社区动态的拥挤影响。为了进一步识别在微生物建模中应考虑拥挤的情况,我们在此应用和扩展的Cromics来模拟几种可能提升或抑制生物膜中拥挤影响的环境条件。我们探索营养供应(富含或低营养介质),细胞包装配置(方形或六边形球形细胞排列),或细胞生长条件(浮游态或生物膜)修改了对大肠杆菌生长的拥挤影响大肠杆菌。我们的结果表明,不同细胞表型的生长速率,丰度和外观时间以及对培养基分泌的副产物的数量在一定程度上对所有场景中的当地拥挤条件进行了敏感,除了富含营养素媒体。拥挤条件增强生物膜中营养梯度的形成,但只有当通过营养限制控制细胞代谢时才才能理解其效果。因此,一旦生物量(和/或任何其他细胞外高分子)在一个区域中积聚,并且细胞占据超过14%的体积分数,就不能低估了拥挤效果,因为微生物动力学开始偏离理想/预期的行为,其假设虚量单元或在模拟中应用均匀(减小)扩散时。物种多样性(细胞形状和新陈代谢)与环境条件(营养质量,拥挤条件)之间的相互建模和模拟可以有助于为微生物系统的优化和控制设计有效的策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号