首页> 外文期刊>Physical Review X >Intermittency of Velocity Circulation in Quantum Turbulence
【24h】

Intermittency of Velocity Circulation in Quantum Turbulence

机译:量子湍流中速度循环的间歇性

获取原文
           

摘要

The velocity circulation, a measure of the rotation of a fluid within a closed path, is a fundamental observable in classical and quantum flows. It is indeed a Lagrangian invariant in inviscid classical fluids. In quantum flows, circulation is quantized, taking discrete values that are directly related to the number and the orientation of thin vortex filaments enclosed by the path. By varying the size of such closed loops, the circulation provides a measure of the dependence of the flow structure on the considered scale. Here, we consider the scale dependence of circulation statistics in quantum turbulence, using high-resolution direct numerical simulations of a generalized Gross-Pitaevskii model. Results are compared to the circulation statistics obtained from simulations of the incompressible Navier-Stokes equations. When the integration path is smaller than the mean intervortex distance, the statistics of circulation in quantum turbulence displays extreme intermittent behavior due to the quantization of circulation, in stark contrast with the viscous scales of classical flows. In contrast, at larger scales, circulation moments display striking similarities with the statistics probed in the inertial range of classical turbulence. In particular, we observe the emergence of the power-law scalings predicted by Kolmogorov’s 1941 theory, as well as intermittency deviations that closely follow the recently proposed bifractal model for circulation moments in classical flows. To date, these findings are the most convincing evidence of intermittency in the large scales of quantum turbulence. Moreover, our results strongly reinforce the resemblance between classical and quantum turbulence, highlighting the universality of inertial-range dynamics, including intermittency, across these two a?priori very different systems. This work paves the way for an interpretation of inertial-range dynamics in terms of the polarization and spatial arrangement of vortex filaments.
机译:速度循环,封闭路径内流体旋转的量度是古典和量子流动的基本观察。它确实是IncIsid典型液体中的拉格朗日不变。在量子流动中,量化循环,采取与路径包围的薄涡旋丝的数量直接相关的离散值。通过改变这种封闭环的尺寸,循环提供了对流动结构对所考虑的比例的依赖性的衡量标准。在这里,我们考虑使用广义总体概述模型的高分辨率直接数值模拟来考虑循环统计量的循环统计的比例依赖性。将结果与从不可压缩的Navier-Stokes方程的模拟获得的循环统计进行比较。当积分路径小于平均干燥距离时,由于循环量化,循环中的循环统计显示出极端的间歇行为,与循环量化,与古典流动的粘性尺度相比。相比之下,在较大的尺度上,循环时刻与经典湍流的惯性范围中探测的统计数据显示出醒目的相似性。特别是,我们遵守Kolmogorov 1941理论预测的权力缩放的出现,以及紧密遵循古典流动循环时刻的最近提出的双分枝模型的间歇性偏差。迄今为止,这些发现是最令人信服的量子湍流中的大规模间歇性。此外,我们的结果强烈强调了经典和量子湍流之间的相似性,突出了惯性动态的普遍性,包括间歇性,跨越这两个a?先验非常不同的系统。这项工作在涡旋长丝的极化和空间排列方面铺平了惯性系列动态的方式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号