首页> 外文期刊>Engineering and Applied Science Research >Transport phenomena, thermodynamic analyses, and mathematical modelling of okra convective cabinet-tray drying at different drying conditions
【24h】

Transport phenomena, thermodynamic analyses, and mathematical modelling of okra convective cabinet-tray drying at different drying conditions

机译:在不同干燥条件下运输现象,热力学分析和秋葵对流柜托盘干燥的数学建模

获取原文
       

摘要

Okra is a vegetable that is highly consumed for its nutritive and health benefits. Due to its highly perishable nature, it is often subjected to hot air drying to increase the shelf-life. Hence, the drying kinetics, moisture diffusivity, heat and mass transfer coefficient, total and specific energy consumption, and exergy (exergetic efficiency, exergetic improvement potential rate, and exergetic sustainability index) are essential parameters required for the drying system design. This study was therefore focused on okra drying data generation for the determination and evaluation of these parameters. The major goal was to utilize the generated data for the development of an innovative process model that can find application in dryer design. A self-designed laboratory cabinet-tray dryer was used for the drying at different drying conditions (temperature (40-70 oC), air velocity (0.5-2.0 m/s), and relative humidity (60-75%)). The obtained results showed that the effective moisture diffusivity ranged from 2.59×10-10 - 7.50×10-10 m2/s while the heat and mass transfer coefficient varied from 1.24-8.07 W/m2K and 1.61×10-7-18.3×10-7 m/s over the drying conditions range, respectively. The energy consumption increased with increasing air velocity, temperature, and relative humidity. The exergy loss rate was higher at higher air velocity, temperature, and relative humidity. The energy and exergetic efficiencies respectively varied from 0.78-4.67% and 65.12-84.96% over the drying conditions range. The exergetic improvement potential rate and the exergetic sustainability index of the drying chamber varied from 0.013-0.201 kW and 2.86-6.65, respectively. An innovative multiple linear regression-Biot-Lag factor model was developed.
机译:秋葵是一种植物营养和健康益处的蔬菜。由于其高度易腐烂的性质,通常经常进行热空气干燥以增加保质期。因此,干燥动力学,水分扩散性,热量和传质系数,总和特定能耗,以及出境(前进的效率,锻炼改善潜在率和前进的可持续性指数)是干燥系统设计所需的基本参数。因此,该研究的重点是秋葵干燥数据生成,用于确定和评估这些参数。主要目标是利用生成的数据来开发创新过程模型,可以在干燥器设计中找到应用。自行设计的实验室托盘干燥器用于不同干燥条件下的干燥(温度(40-70℃),空气速度(0.5-2.0m / s)和相对湿度(60-75%))。得到的结果表明,有效的水分扩散率范围为2.59×10-10-7.50×10-10m 2 / s,而热量和传质系数可变,从1.24-8.07 w / m 2k和1.61×10-7-18.3×10变化-7 m / s分别在干燥条件范围内。随着空气速度,温度和相对湿度的增加,能量消耗增加。在较高的空气速度,温度和相对湿度较高的情况下,漏胀率更高。在干燥条件范围内,能量和前进效率分别从0.78-4.67%和65.12-84.96%变化。干燥室的前进改善潜力率和淬火可持续性指数分别从0.013-0.201千瓦和2.86-6.65分别变化。开发了一种创新的多元线性回归 - 生物滞后因子模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号