...
首页> 外文期刊>The Cryosphere >Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice
【24h】

Simulated Ka- and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice

机译:雪覆盖的北极海冰模拟ka-和ku波段雷达高度和干舷估计

获取原文
           

摘要

Owing to differing and complex snow geophysical properties, radar waves of different wavelengths undergo variable penetration through snow-covered sea ice. However, the mechanisms influencing radar altimeter backscatter from snow-covered sea ice, especially at Ka- and Ku-band frequencies, and the impact on the Ka- and Ku-band radar scattering horizon or the “track point” (i.e. the scattering layer depth detected by the radar re-tracker) are not well understood. In this study, we evaluate the Ka- and Ku-band radar scattering horizon with respect to radar penetration and ice floe buoyancy using a first-order scattering model and the Archimedes principle. The scattering model is forced with snow depth data from the European Space Agency (ESA) climate change initiative (CCI) round-robin data package, in which NASA's Operation IceBridge (OIB) data and climatology are included, and detailed snow geophysical property profiles from the Canadian Arctic. Our simulations demonstrate that the Ka- and Ku-band track point difference is a function of snow depth; however, the simulated track point difference is much smaller than what is reported in the literature from the Ku-band CryoSat-2 and Ka-band SARAL/AltiKa satellite radar altimeter observations. We argue that this discrepancy in the Ka- and Ku-band track point differences is sensitive to ice type and snow depth and its associated geophysical properties. Snow salinity is first increasing the Ka- and Ku-band track point difference when the snow is thin and then decreasing the difference when the snow is thick ( 0.1 ?m). A relationship between the Ku-band radar scattering horizon and snow depth is found. This relationship has implications for (1)?the use of snow climatology in the conversion of radar freeboard into sea ice thickness and (2)?the impact of variability in measured snow depth on the derived ice thickness. For both (1) and (2), the impact of using a snow climatology versus the actual snow depth is relatively small on the radar freeboard, only raising the radar freeboard by 0.03 times the climatological snow depth plus 0.03 times the real snow depth. The radar freeboard is a function of both radar scattering and floe buoyancy. This study serves to enhance our understanding of microwave interactions towards improved accuracy of snow depth and sea ice thickness retrievals via the combination of the currently operational and ESA's forthcoming Ka- and Ku-band dual-frequency CRISTAL radar altimeter missions.
机译:由于雪地球物理特性不同,雪地球物理特性,不同波长的雷达波通过积雪的海冰经历可变的渗透。然而,影响雷达高度计反向散射的机制从积雪覆盖的海冰,特别是在KA和Ku波段频率下,以及对KA和KU带雷达散射地平线的影响或“轨迹点”(即散射层)雷达重新跟踪器检测到的深度还不太了解。在这项研究中,我们使用一阶散射模型和Archimedes原理评估了雷达渗透和冰浮岩散射地平线的KA-和KU带雷达散射地平线。从欧洲航天局(ESA)气候变化倡议(CCI)循环数据包中迫使散射模型用来自欧洲航天局(ESA)循环数据包,其中NASA的操作IceBridge(OIB)数据和气候学,以及来自的详细雪地地球物理属性加拿大北极。我们的模拟表明,KA-和Ku波段轨道点差异是雪深的函数;然而,模拟的轨道点差远小于文献中的文献中报告的ku波段低温-2和ka波段Saral / Altika卫星雷达高度计观察。我们认为,KA-和Ku带轨迹点差异的这种差异对冰型和雪深以及其相关地球物理性质敏感。雪盐度首先增加了当雪薄时的ka和ku波段轨道点差异,然后在雪厚时降低差异(& 0.1?m)。发现了KU波段雷达散射地平线和雪深的关系。这种关系对(1)的影响有所影响?在雷达干舷转换为海冰厚度和(2)中的使用在雷达流动中的使用情况?在衍生的冰厚度上测量的雪深度变异性的影响。对于(1)和(2),使用雪气候的影响与实际雪深的影响相对较小,雷达收油板上相对较小,只升高了雷达干舷的气候雪深度的0.03倍的真实雪深的0.03倍。雷达收油板是雷达散射和浮冰浮力的函数。本研究有助于通过当前运营和ESA即将到来的KA和KU频段双频克里斯特雷达高度计任务的组合,提高我们对微波相互作用以改善雪深和海冰厚度检索的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号