首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Atmospheric-methane source and sink sensitivity analysis using Gaussian process emulation
【24h】

Atmospheric-methane source and sink sensitivity analysis using Gaussian process emulation

机译:高斯工艺仿真的大气 - 甲烷源和水槽敏感性分析

获取原文
           

摘要

We present a method to efficiently approximate the response of atmospheric-methane mole fraction and δ 13 C–CH 4 to changes in uncertain emission and loss parameters in a three-dimensional global chemical transport model. Our approach, based on Gaussian process emulation, allows relationships between inputs and outputs in the model to be efficiently explored. The presented emulator successfully reproduces the chemical transport model output with a root-mean-square error of 1.0?ppb and 0.05?‰ for hemispheric-methane mole fraction and δ 13 C–CH 4 , respectively, for 28 uncertain model inputs. The method is shown to outperform multiple linear regression because it captures non-linear relationships between inputs and outputs as well as the interaction between model input parameters. The emulator was used to determine how sensitive methane mole fraction and δ 13 C–CH 4 are to the major source and sink components of the atmospheric budget given current estimates of their uncertainty. We find that our current knowledge of the methane budget, as inferred through hemispheric mole fraction observations, is limited primarily by uncertainty in the global mean hydroxyl radical concentration and freshwater emissions. Our work quantitatively determines the added value of measurements of δ 13 C–CH 4 , which are sensitive to some uncertain parameters to which mole fraction observations on their own are not. However, we demonstrate the critical importance of constraining isotopic initial conditions and isotopic source signatures, small uncertainties in which strongly influence long-term δ 13 C–CH 4 trends because of the long timescales over which transient perturbations propagate through the atmosphere. Our results also demonstrate that the magnitude and trend of methane mole fraction and δ 13 C–CH 4 can be strongly influenced by the combined uncertainty in more minor components of the atmospheric budget, which are often fixed and assumed to be well-known in inverse-modelling studies (e.g. emissions from termites, hydrates, and oceans). Overall, our work provides an overview of the sensitivity of atmospheric observations to budget uncertainties and outlines a method which could be employed to account for these uncertainties in future inverse-modelling systems.
机译:我们提出了一种有效地近似大气 - 甲烷摩尔分数和δ13C-CH4的响应的方法,以三维全球化学传输模型中不确定排放和损耗参数的变化。我们的方法基于高斯流程仿真,允许有效探索模型中的输入和输出之间的关系。所提出的仿真器分别成功地再现了与28个不确定模型输入的半球 - 甲烷摩尔分别的1.0μm-甲烷摩尔分数和0.05Ω·‰的化学传输模型输出。该方法被示出以优于多元线性回归,因为它捕获输入和输出之间的非线性关系以及模型输入参数之间的交互。仿真器用于确定甲烷摩尔分数和δ13C-CH 4的敏感性程度和δ13C-CH 4的主要源和水槽部件给出了其不确定性的当前估计。我们发现,我们目前对通过半球摩尔分数观察推断出甲烷预算的知识,主要受到全局平均羟基自由基浓度和淡水排放的不确定性的限制。我们的工作量地确定了Δ13C-CH 4的测量值的附加值,这对一些不确定的参数敏感到它们自己的摩尔分数观察的不确定参数。然而,我们证明了约束同位素初始条件和同位素源签名,小不确定性强烈影响长期Δ13C-CH4趋势的致力于性重要性,因为瞬态扰动通过大气传播的长时间时间。我们的结果还表明,甲烷摩尔分数和δ13C-CH4的幅度和趋势可能受到大气预算的更多细胞组成部分中的综合不确定性的强烈影响,这通常是固定的并且假设以逆众所周知 - 推荐研究(例如,来自白蚁,水合物和海洋的排放)。总体而言,我们的工作概述了大气观测到预算不确定性的敏感性,并概述了一种可以用于解释未来反向建模系统中这些不确定性的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号