首页> 外文期刊>PLoS One >Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling
【24h】

Determining soil particle-size distribution from infrared spectra using machine learning predictions: Methodology and modeling

机译:使用机器学习预测从红外光谱确定土壤粒度分布:方法论和建模

获取原文
       

摘要

Accuracy of infrared (IR) models to measure soil particle-size distribution (PSD) depends on soil preparation, methodology (sedimentation, laser), settling times and relevant soil features. Compositional soil data may require log ratio ( ilr ) transformation to avoid numerical biases. Machine learning can relate numerous independent variables that may impact on NIR spectra to assess particle-size distribution. Our objective was to reach high IRS prediction accuracy across a large range of PSD methods and soil properties. A total of 1298 soil samples from eastern Canada were IR-scanned. Spectra were processed by Stochastic Gradient Boosting (SGB) to predict sand, silt, clay and carbon. Slope and intercept of the log-log relationships between settling time and suspension density function (SDF) (R 2 = 0.84–0.92) performed similarly to NIR spectra using either ilr -transformed (R 2 = 0.81–0.93) or raw percentages (R 2 = 0.76–0.94). Settling times of 0.67-min and 2-h were the most accurate for NIR predictions (R 2 = 0.49–0.79). The NIR prediction of sand sieving method (R 2 = 0.66) was more accurate than sedimentation method(R 2 = 0.53). The NIR 2X gain was less accurate (R 2 = 0.69–0.92) than 4X (R 2 = 0.87–0.95). The MIR (R 2 = 0.45–0.80) performed better than NIR (R 2 = 0.40–0.71) spectra. Adding soil carbon, reconstituted bulk density, pH, red-green-blue color, oxalate and Mehlich3 extracts returned R 2 value of 0.86–0.91 for texture prediction. In addition to slope and intercept of the SDF, 4X gain, method and pre-treatment classes, soil carbon and color appeared to be promising features for routine SGB-processed NIR particle-size analysis. Machine learning methods support cost-effective soil texture NIR analysis.
机译:用于测量土壤粒子尺寸分布(PSD)的红外线(IR)模型的精度取决于土壤制备,方法(沉积,激光),沉降时间和相关土壤特征。组成土壤数据可能需要数值(ILR)变换以避免数值偏差。机器学习可以对可能影响NIR光谱来评估粒度分布的许多独立变量。我们的目的是在大量的PSD方法和土壤性质方面达到高国税局预测准确性。加拿大东部1298种土壤样品被红外扫描。通过随机梯度升压(SGB)处理光谱,以预测砂,淤泥,粘土和碳。使用ILR -Transformed(R 2 = 0.81-0.93)或原始百分比(R. 2 = 0.76-0.94)。 0.67分钟和2-H的沉降时间是NIR预测最准确的(R 2 = 0.49-0.79)。砂筛分法的NIR预测(R 2 = 0.66)比沉淀法更精确(R 2 = 0.53)。 NIR 2X增益不太准确(R 2 = 0.69-0.92),而不是4x(R 2 = 0.87-0.95)。 MIR(R 2 = 0.45-0.80)比NIR更好(R 2 = 0.40-0.71)光谱。添加土壤碳,重构堆积密度,pH,红绿蓝色,草酸和Mehlich3提取物返回R 2值为0.86-0.91以进行纹理预测。除了SDF的坡度和截距外,4倍增益,方法和预处理类别,土壤碳和颜色似乎是常规SGB处理的NIR粒度分析的有希望的特征。机器学习方法支持具有成本效益的土壤纹理NIR分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号