...
首页> 外文期刊>PLoS One >ChronoMID—Cross-modal neural networks for 3-D temporal medical imaging data
【24h】

ChronoMID—Cross-modal neural networks for 3-D temporal medical imaging data

机译:三维颞型医学成像数据的Chronomid-跨模型神经网络

获取原文
   

获取外文期刊封面封底 >>

       

摘要

ChronoMID—neural networks for temporally-varying, hence Chrono , M edical I maging D ata—makes the novel application of cross-modal convolutional neural networks (X-CNNs) to the medical domain. In this paper, we present multiple approaches for incorporating temporal information into X-CNNs and compare their performance in a case study on the classification of abnormal bone remodelling in mice. Previous work developing medical models has predominantly focused on either spatial or temporal aspects, but rarely both. Our models seek to unify these complementary sources of information and derive insights in a bottom-up, data-driven approach. As with many medical datasets, the case study herein exhibits deep rather than wide data; we apply various techniques, including extensive regularisation, to account for this. After training on a balanced set of approximately 70000 images, two of the models—those using difference maps from known reference points—outperformed a state-of-the-art convolutional neural network baseline by over 30 pp ( 99% vs. 68.26%) on an unseen, balanced validation set comprising around 20000 images. These models are expected to perform well with sparse data sets based on both previous findings with X-CNNs and the representations of time used, which permit arbitrarily large and irregular gaps between data points. Our results highlight the importance of identifying a suitable description of time for a problem domain, as unsuitable descriptors may not only fail to improve a model, they may in fact confound it.
机译:Chronomid-Neural网络用于时间变化,因此Chrono,M eDical I Maging D ATA - 使跨模型卷积神经网络(X-CNNS)的新颖应用于医学域。在本文中,我们提出了一种将时间信息掺入X-CNN的多种方法,并在小鼠中对异常骨重塑的分类进行比较它们的性能。以前的工作开发医疗模型主要集中在空间或时间方面,但很少都是两者。我们的模型旨在统一这些补充信息来源,并在自下而上的数据驱动方法中获得洞察力。与许多医疗数据集一样,本文的案例研究表现出深度而不是广泛的数据;我们应用各种技术,包括广泛的正则化,以解释这一点。在培训大约70000图像的平衡集之后,其中两个模型 - 使用已知参考点的差异图 - 优于最先进的卷积神经网络基线(& 99%与68.26) %)在看不见的验证集上,包括大约20000张图像。这些模型预计将基于具有X-CNN的先前发现和所用时间的表示的稀疏数据集,允许在数据点之间任意大而不规则的间隙进行稀疏数据集。我们的结果突出了识别问题域的适当描述的重要性,因为不合适的描述符可能不仅可以改善模型而无法改善模型,因此他们可能会混淆它。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号