首页> 外文期刊>PLoS One >Probabilistic Optically-Selective Single-molecule Imaging Based Localization Encoded (POSSIBLE) microscopy for ultra-superresolution imaging
【24h】

Probabilistic Optically-Selective Single-molecule Imaging Based Localization Encoded (POSSIBLE) microscopy for ultra-superresolution imaging

机译:基于概率的光学选择单分子成像的基于定位(可能的)显微镜的超超级级别成像

获取原文
           

摘要

To be able to resolve molecular-clusters it is crucial to access vital information (such as, molecule density, cluster-size, and others) that are key in understanding disease progression and the underlying mechanism. Traditional single-molecule localization microscopy (SMLM) techniques use molecules of variable sizes (as determined by its localization precision (LP)) to reconstruct a super-resolution map. This results in an image with overlapping and superimposing PSFs (due to a wide size-spectrum of single-molecules) that undermine image resolution. Ideally, it should be possible to identify the brightest molecules (also termed as the fortunate molecules ) to reconstruct ultra-superresolution map, provided sufficient statistics is available from the recorded data. Probabilistic Optically-Selective Single-molecule Imaging Based Localization Encoded (POSSIBLE) microscopy explores this possibility by introducing a narrow probability size-distribution of single-molecules (narrow size-spectrum about a predefined mean-size). The reconstruction begins by presetting the mean and variance of the narrow distribution function (Gaussian function). Subsequently, the dataset is processed and single-molecules are filtered by the Gaussian function to remove unfortunate molecules. The fortunate molecules thus retained are then mapped to reconstruct an ultra-superresolution map. In-principle, the POSSIBLE microscopy technique is capable of infinite resolution (resolution of the order of actual single-molecule size) provided enough fortunate molecules are experimentally detected. In short, bright molecules (with large emissivity) holds the key. Here, we demonstrate the POSSIBLE microscopy technique and reconstruct single-molecule images with an average PSF sizes of σ ± Δ σ = 15 ± 10 nm , 30 ± 2 nm & 50 ± 2 nm . Results show better-resolved Dendra2-HA clusters with large cluster-density in transfected NIH3T3 fibroblast cells as compared to the traditional SMLM techniques. Cluster analysis indicates densely-packed HA molecules, HA-HA interaction, and a surge in the number of HA molecules per cluster post 24 Hrs of transfection. The study using POSSIBLE microscopy introduces new insights in influenza biology. We anticipate exciting applications in the multidisciplinary field of disease biology, oncology, and biomedical imaging.
机译:为了能够解析分子簇,这对于获取理解疾病进展和潜在机制的关键是关键的重要信息(例如,分子密度,簇大小等)至关重要。传统的单分子定位显微镜(SMLM)技术使用可变大小的分子(通过其定位精度(LP)确定以重建超分辨率地图。这导致具有重叠和叠加PSF的图像(由于宽尺寸频谱的单分子),其破坏图像分辨率。理想地,应该可以识别最亮的分子(也称为幸运分子)来重建超超级级别图,提供了足够的统计数据可从记录的数据中获得。基于概率的光学选择性单分子成像编码(可能的)显微镜通过引入单分子的窄概率尺寸分布(关于预定义的平均尺寸)的窄概率大小分布来探讨这种可能性。通过预设窄分布函数(高斯函数)的平均值和方差开始,重建开始。随后,处理数据集并通过高斯函数过滤单分子以移除不幸的分子。然后将如此保留的幸运分子映射以重建超超级级别图。原则上,可能的显微镜技术能够提供无限分辨率(实际单分子大小的分辨率)提供足够的幸运分子是通过实验检测的。简而言之,明亮的分子(具有大发射率)握住钥匙。这里,我们展示了可能的显微镜技术,并重建单分子图像,平均psf尺寸的σ±δσ= 15±10nm,30±2nm&50±2nm。结果显示与传统的SMLM技术相比,在转染的NIH3T3成纤维细胞中显示出具有大的簇密度的更好的分离的Dendra2-HA簇。簇分析表明浓密填充的HA分子,HA-HA相互作用,以及每簇24小时转染的HA分子数的浪涌。使用可能的显微镜的研究在流感生物学中引入了新的见解。我们预计在多学科疾病生物学,肿瘤学和生物医学成像中的令人兴奋的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号