...
首页> 外文期刊>Applied Microbiology >Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium
【24h】

Multi-omic Directed Discovery of Cellulosomes, Polysaccharide Utilization Loci, and Lignocellulases from an Enriched Rumen Anaerobic Consortium

机译:来自富集的瘤胃厌氧联盟的纤维质体,多糖利用基因酶和木质纤维素酶的多OMIC指导发现

获取原文

摘要

Lignocellulose is one of the most abundant renewable carbon sources, representing an alternative to petroleum for the production of fuel and chemicals. Nonetheless, the lignocellulose saccharification process, to release sugars for downstream applications, is one of the most crucial factors economically challenging to its use. The synergism required among the various carbohydrate-active enzymes (CAZymes) for efficient lignocellulose breakdown is often not satisfactorily achieved with an enzyme mixture from a single strain. To overcome this challenge, enrichment strategies can be applied to develop microbial communities with an efficient CAZyme arsenal, incorporating complementary and synergistic properties, to improve lignocellulose deconstruction. We report a comprehensive and deep analysis of an enriched rumen anaerobic consortium (ERAC) established on sugarcane bagasse (SB). The lignocellulolytic abilities of the ERAC were confirmed by analyzing the depolymerization of bagasse by scanning electron microscopy, enzymatic assays, and mass spectrometry. Taxonomic analysis based on 16S rRNA sequencing elucidated the community enrichment process, which was marked by a higher abundance of Firmicutes and Synergistetes species. Shotgun metagenomic sequencing of the ERAC disclosed 41 metagenome-assembled genomes (MAGs) harboring cellulosomes and polysaccharide utilization loci (PULs), along with a high diversity of CAZymes. The amino acid sequences of the majority of the predicted CAZymes (60% of the total) shared less than 90% identity with the sequences found in public databases. Additionally, a clostridial MAG identified in this study produced proteins during consortium development with scaffoldin domains and CAZymes appended to dockerin modules, thus representing a novel cellulosome-producing microorganism.IMPORTANCE The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries.
机译:木质纤维素是最丰富的可再生碳源之一,代表石油的替代品用于生产燃料和化学品。尽管如此,对于下游应用的木质纤维素糖化过程,向下游应用释放糖,是最重要的因素是经济上挑战其使用的最重要因素之一。通过来自单个菌株的酶混合物通常不令人满意地实现各种碳水化合物活性酶(胆固醇)中所需的协同作用。为了克服这一挑战,可以应用丰富的策略,以发展微生物群体,以有效的巨大巨蜥,掺入互补和协同性质,以改善木质纤维素解构。我们举报了在甘蔗队(SB)上成立的富集瘤胃厌氧联盟(ERAC)的全面和深刻的分析。通过扫描电子显微镜,酶测定和质谱法分析甘蔗渣的解聚,并通过质谱来确认ERAC的木质纤维素溶解能力。基于16S rRNA测序的分类分类分析阐明了群落富集过程,其标志着较高丰富的压缩和同龄物种。 ERAC的霰弹枪METAGEMIC测序公开了41个酵母组合的基因组(MAGS),其含有纤维素和多糖利用基因座(脉冲)以及高多样性的巨毛虫。大多数预测的巨蜥(总量的60%)的氨基酸序列与公共数据库中发现的序列相同的少于90%的同一性。另外,本研究中鉴定的梭菌MAG产生的蛋白质在结合中产生蛋白质,其用支架域和附加到Dockerin模块的婴儿组织,因此代表了一种新型纤维素组微生物。称为Lignocellulolytic Erac的分传型植物多糖降解酶(具有多模特征),纤维素复合物和脉冲。这里描述的MAG代表了植物多糖降解的瘤胃细菌基因组的遗传含量的膨胀,因此为待应用于基于木质纤维素的生物猎物的生物催化工具箱策略提供有价值的资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号