首页> 外文期刊>International Journal of Electrochemical Science >Degradation Differences of a Single Proton Exchange Membrane Fuel Cell: Energy Management Strategy and Dynamic Programming
【24h】

Degradation Differences of a Single Proton Exchange Membrane Fuel Cell: Energy Management Strategy and Dynamic Programming

机译:单一质子交换膜燃料电池的降解差异:能源管理策略和动态规划

获取原文
获取外文期刊封面目录资料

摘要

The durability of proton exchange membrane fuel cells (PEMFC) is one of the limitations to its wide application in vehicles and other equipment. In this paper, a running profile of PEMFC using dynamic programming (DP) energy management strategy (EMS) is designed. The degradation of a single PEMFC is studied by running a single PEMFC under the designed cycle. Voltage decline rate reaches 1240 μV/h at 600 mA/cm2 /s, faster than most Acceleration Stress Tests (AST). Performance decline difference in different areas of a single PEMFC is investigated. Degradation differences in 6 regions are analyzed using Localized Electrochemical Impedance Spectroscopy (EIS). The results show that the gas inlet area has higher and increasing high frequency resistance (HFR). Degradation of proton transport of proton exchange membrane (PEM) is related to hydrogen concentration and water content in the membrane. Gas inlet regions are less affected by mass transfer. This may due to less water being produced and accumulated near the gas inlet. Deterioration of mass transfer is related to corrosion of reactants/products micro channels that damage drainage capacity. Accumulated water blocks the transportation of reactants and causes flooding phenomenon. Charge transfer resistance also increases, indicating that catalyst layers also suffer during the durability experiments.
机译:质子交换膜燃料电池(PEMFC)的耐久性是其广泛应用于车辆和其他设备的限制之一。本文设计了使用动态编程(DP)能量管理策略(EMS)的PEMFC的运行配置文件。通过在设计的循环下运行单个PEMFC来研究单个PEMFC的劣化。电压下降率为600 mA / cm2 / s达到1240μV/ h,比大多数加速应力测试(AST)快。调查了单个PEMFC的不同区域的性能下降差异。使用局部电化学阻抗光谱(EIS)分析6个区域的降解差异。结果表明,气体入口区域具有较高且越来越高的高频电阻(HFR)。质子交换膜(PEM)质子传输的降解与膜中的氢浓度和水含量有关。气体入口区域受到传质的影响较小。这可能是由于在气体入口附近产生和累积的水较小。传质的恶化与反应物/产品微通道的腐蚀有关,可损坏引流能力。累积的水阻滞反应物的运输并导致洪水现象。电荷传递电阻也增加,表明催化剂层也在耐久性实验期间遭受。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号