首页> 外文期刊>Atmospheric Measurement Techniques Discussions >Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents
【24h】

Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents

机译:使用无线电探测观测和数值天气预报模型等同物验证风吸风

获取原文
           

摘要

In August 2018, the first Doppler wind lidar, developed by the European Space Agency (ESA), was launched on board the Aeolus satellite into space. Providing atmospheric wind profiles on a global basis, the Earth Explorer mission is expected to demonstrate improvements in the quality of numerical weather prediction (NWP). For the use of Aeolus observations in NWP data assimilation, a detailed characterization of the quality and the minimization of systematic errors is crucial. This study performs a statistical validation of Aeolus observations, using collocated radiosonde measurements and NWP forecast equivalents from two different global models, the ICOsahedral Nonhydrostatic model (ICON) of Deutscher Wetterdienst (DWD) and the European Centre for Medium-Range Weather Forecast (ECMWF) Integrated Forecast System (IFS) model, as reference data. For the time period from the satellite's launch to the end of December 2019, comparisons for the Northern Hemisphere (23.5–65 ° ?N) show strong variations of the Aeolus wind bias and differences between the ascending and descending orbit phase. The mean absolute bias for the selected validation area is found to be in the range of 1.8–2.3? m?s ?1 (Rayleigh) and 1.3–1.9? m?s ?1 (Mie), showing good agreement between the three independent reference data sets. Due to the greater representativeness errors associated with the comparisons using radiosonde observations, the random differences are larger for the validation with radiosondes compared to the model equivalent statistics. To achieve an estimate for the Aeolus instrumental error, the representativeness errors for the comparisons are determined, as well as the estimation of the model and radiosonde observational error. The resulting Aeolus error estimates are in the range of 4.1–4.4? m?s ?1 (Rayleigh) and 1.9–3.0? m?s ?1 (Mie). Investigations of the Rayleigh wind bias on a global scale show that in addition to the satellite flight direction and seasonal differences, the systematic differences vary with latitude. A latitude-based bias correction approach is able to reduce the bias, but a residual bias of 0.4–0.6? m?s ?1 with a temporal trend remains. Taking additional longitudinal differences into account, the bias can be reduced further by almost 50? % . Longitudinal variations are suggested to be linked to land–sea distribution and tropical convection that influences the thermal emission of the earth. Since 20?April 2020 a telescope temperature-based bias correction scheme has been applied operationally in the L2B processor, developed by the Aeolus Data Innovation and Science Cluster (DISC).
机译:2018年8月,由欧洲航天局(ESA)开发的第一个多普勒风激光雷达在Aeolus卫星的船上发射到太空中。在全球范围内提供大气风概况,预计地球探险家任务将展示数值天气预报质量(NWP)的改进。为了在NWP数据同化中使用Aeolus观察,详细表征质量和系统误差的最小化是至关重要的。本研究表现了一种统计验证风神观测,使用两种不同全球模型,德国韦瑟德(DWD)和欧洲中距离天气预报(ECMWF)的ICOSAHEDRAL非水矫正模型(图标)和欧洲的中等学天气预报中心(ECMWF)的统计验证集成预测系统(IFS)模型,作为参考数据。在卫星发射到2019年12月底的时间段,北半球的比较(23.5-65°?N)显示了升降和下降轨道阶段之间的鸟类风偏差和差异的强烈变化。发现所选验证区域的平均绝对偏置在1.8-2.3的范围内? m?s?1(瑞利)和1.3-1.9? m?s?1(mie),在三个独立的参考数据集之间显示出良好的一致性。由于使用无线电探测观察结果与比较相关的更大的代表性误差,与模型等价统计数据相比,随机验证的验证是较大的随机差异。为了实现Aeolus乐器误差的估计,确定了比较的代表性误差,以及估计模型和无线电探测误差。产生的Aeolus误差估计在4.1-4.4的范围内? m?s?1(瑞利)和1.9-3.0? m?s?1(mie)。在全球范围内对瑞利风偏差的调查表明,除了卫星飞行方向和季节性差异之外,系统的差异还有纬度。基于纬度的偏压校正方法能够减少偏差,但剩余偏差为0.4-0.6? m?s?1,仍然存在时间趋势。考虑额外的纵向差异,差异可以进一步减少近50? %。建议纵向变化与土地分布和影响地球热排放的热带对流相关联。自20岁以下以来,2020年4月20日望远镜温度的偏差方案在L2B处理器中运行,由Aeolus数据创新和科学集群(光盘)开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号