首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations
【24h】

Evaluation of simulated cloud liquid water in low clouds over the Beaufort Sea in the Arctic System Reanalysis using ARISE airborne in situ observations

机译:在北极系统再分析中,在北极系统再分析中,利用空气传播评价北极系统重新分析的模拟云液体水

获取原文
       

摘要

Arctic low clouds and the water they contain influence the evolution of the Arctic system through their effects on radiative fluxes, boundary layer mixing, stability, turbulence, humidity, and precipitation. Atmospheric models struggle to accurately simulate the occurrence and properties of Arctic low clouds, stemming from errors in both the simulated atmospheric state and the dependence of cloud properties on the atmospheric state. Knowledge of the contributions from these two factors to the model errors allows for the isolation of the process contributions to the model–observation differences. We analyze the differences between the Arctic System Reanalysis version 2 (ASR) and data taken during the September 2014 Arctic Radiation–IceBridge Sea and Ice Experiment (ARISE) airborne campaign conducted over the Beaufort Sea. The results show that ASR produces less total and liquid cloud water than observed along the flight track and is unable to simulate observed large in-cloud water content. Contributing to this bias, ASR is warmer by nearly 1.5?K and drier by 0.06? g?kg ?1 (relative humidity 4.3?% lower) than observed. Moreover, ASR produces cloud water over a much narrower range of thermodynamic conditions than shown in ARISE observations. Analyzing the ARISE–ASR differences by thermodynamic conditions, our results indicate that the differences are primarily attributed to disagreements in the cloud–thermodynamic relationships and secondarily (but importantly) to differences in the occurrence frequency of thermodynamic regimes. The ratio of the factors is about 2 / 3 to 1 / 3 . Substantial sampling uncertainties are found within low-likelihood atmospheric regimes; sampling noise cannot be ruled out as a cause of observation–model differences, despite large differences. Thus, an important lesson from this analysis is that when comparing in situ airborne data and model output, one should not restrict the comparison to flight-track-only model output.
机译:北极低云和水含有它们通过对辐射助焊剂,边界层混合,稳定性,湍流,湿度和沉淀的影响来影响北极系统的演变。大气模型努力准确模拟北极低云的发生和性质,源于模拟大气状态的误差和云属性在大气状态下的依赖性。知识对模型错误的这两个因素的贡献允许将过程贡献隔离到模型观察差异。我们分析了2014年9月北极辐射 - 冰桥海和冰实验(出现)在Beaufort海上进行的冰实验(出现)的北极系统再分析版本2(ASR)和数据之间的差异。结果表明,ASR产生的总和含有液体云水较少,而不是沿着飞行轨道观察到的,并且无法模拟观察到的大云含水量。贡献这一偏见,ASR将近1.5架升温为0.06的近1.5?K和干燥剂? g?kg?1(相对湿度4.3Ω·%)而不是观察到。此外,ASR在热力学条件的更窄范围内产生云水,而不是出现观察结果。通过热力学条件分析出现的ASR差异,我们的结果表明,差异主要归因于云热力学关系中的分歧,并二次(但重要的是)热力学制度发生频率的差异。因子的比例约为2/3至1/3。在低似然性大气制度范围内发现了大量的抽样不确定性;尽管存在较大差异,但不能排除采样噪声作为观察模型差异的原因。因此,来自该分析的重要课程是,当与原位空机数据和模型输出相比,人们不应限制与飞行轨道模型输出的比较。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号