首页> 外文期刊>Npj Computational Materials >Intersystem crossing and exciton-defect coupling of spin defects in hexagonal boron nitride
【24h】

Intersystem crossing and exciton-defect coupling of spin defects in hexagonal boron nitride

机译:六边形氮化物中旋转缺陷的间隙交叉和激子缺陷耦合

获取原文
           

摘要

Despite the recognition of two-dimensional (2D) systems as emerging and scalable host materials of single-photon emitters or spin qubits, the uncontrolled, and undetermined chemical nature of these quantum defects has been a roadblock to further development. Leveraging the design of extrinsic defects can circumvent these persistent issues and provide an ultimate solution. Here, we established a complete theoretical framework to accurately and systematically design quantum defects in wide-bandgap 2D systems. With this approach, essential static and dynamical properties are equally considered for spin qubit discovery. In particular, many-body interactions such as defect-exciton couplings are vital for describing excited state properties of defects in ultrathin 2D systems. Meanwhile, nonradiative processes such as phonon-assisted decay and intersystem crossing rates require careful evaluation, which competes together with radiative processes. From a thorough screening of defects based on first-principles calculations, we identify promising single-photon emitters such as SiVV and spin qubits such as TiVV and MoVV in hexagonal boron nitride. This work provided a complete first-principles theoretical framework for defect design in 2D materials.
机译:尽管识别二维(2D)系统作为单光子发射器或旋转Qubits的出现和可扩展的主体材料,但这些量子缺陷的不受控制和未确定的化学性质是进一步发展的障碍。利用外部缺陷的设计可以规避这些持久性问题并提供最终的解决方案。在这里,我们建立了一个完整的理论框架,以准确,系统地设计宽带隙2D系统中的量子缺陷。利用这种方法,基本的静态和动态特性被同等地考虑用于旋转量子位发现。特别地,许多身体相互作用,例如缺陷激子偶联对于描述超薄2D系统中的缺陷的激发状态性质至关重要。同时,诸如声子辅助衰减和界面系统交叉率的非阵列过程需要仔细评估,与辐射过程一起竞争。根据基于第一原理计算的彻底筛选缺陷,我们确定有前途的单光子发射器,例如SIVV和旋转Qubits,如六边形氮化物中的TIVV和MOVV。这项工作为2D材料提供了一个完整的第一原理理论框架,用于缺陷设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号