首页> 外文期刊>MBio >Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria
【24h】

Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria

机译:培养加载和病毒记忆驱动器在盛开的蓝藻中限制改性系统的累积

获取原文
           

摘要

ABSTRACT The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria . We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems.
机译:摘要驱动天麻植物有害藻类(HAB)的机制,如Microcystis铜绿假单胞菌引起的那些仍然难以捉摸,但对富营养化环境的成功有涉及对病毒捕食的改善的防御。我们的属级别分析为139,023个基因组,显示出每种基因组(RMPG)携带比几乎所有其他原核属的携带大大限制性修饰系统,这表明病毒防御是其生态成功的基石。相反,数值主导的营养不良系统的野生糖细菌具有紫杉杆菌内的最少的RMPG。我们使用经典资源竞争模型来探索营养丰富导致高RMPG的生态选择的假设,因为主机噬菌体接触率增加。这些经典模型不可知,防御机制,解释了如何选择营养加载如何选择RMPG,但重要的是,未能解释这些防御系统的极端积累。然而,RMPG的极端累积可以在新颖的“记忆”模型中来实现,该模型考虑了限制性修改系统的独特活动:甲基转移酶的病毒DNA的意外甲基化。甲基化病毒“记得”其前主体的RM防御,如果它们存在于下一个主机中,可以避免这些防御。该病毒记忆导致连续的RM系统贬值; RMS广泛累积,因为每个添加的益处都会减少。我们的建模导致假设营养加载和病毒甲酸甲基化驱动RMPG在HAB形成蓝藻中的极端积累。最后,我们的模型表明,当主机有唯一的RM系统集时,具有不同RMPG值的主机可以共存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号