首页> 外文期刊>Current Journal of Applied Science and Technology >Myco-enhanced Bioremediation in Open Field Crude Oil Contaminated Soil Using Mucor racemosus and Aspergillus niger
【24h】

Myco-enhanced Bioremediation in Open Field Crude Oil Contaminated Soil Using Mucor racemosus and Aspergillus niger

机译:Myco-Enhanced Field of Open Field原油污染土壤使用粘虫菌和曲霉尼日尔

获取原文
       

摘要

Aim: To assess the Mycoremediation potential of Mucor racemosus and Aspergillus niger in open field crude oil contaminated soils in Rivers State, Nigeria.?Study Design: The study employs experimental design, statistical analysis of the data and interpretation.Place and Duration of Study: Rivers State University demonstration farmland in Nkpolu-Oroworukwo, Mile 3 Diobu area of Port Harcourt, was used for this study. The piece of land is situated at Longitude 4°48’18.50” N and Latitude 6~(?)58’39.12” E measuring 5.4864 m x 5.1816 m with a total area of 28.4283 square meter. Mycoremediation process monitoring lasted for 56 days, analyses were carried out weekly at 7 days’ interval.Methodology: Five (5) experimental plots were employed using a Randomized Block Design each having dimensions of 100 x 50 x 30 cm (Length x Breadth x Height) and were formed and mapped out on agricultural soil, each plot was contaminated with 22122.25g of Crude Oil except Control 1 and left fallow for 6 days after contamination for proper contamination and exposure to natural environmental factors to mimic crude oil spill site. On the seventh day bio-augmentation process commenced using two (2) fungal isolates namely Aspergillus niger [Asp] and Mucor rasemosus [Muc]). Two (2) control plots (P1: Uncontaminated and unamended soil - CTRL 1 US) and P2: Crude Oil contaminated but unamended soil - CTRL 2 CS); P3 = P5 were contaminated and amended/bioaugmented (P3: CS+Asp, P4: CS+Muc, P5: CS+Asp+Muc respectively. Soil profile before and after contamination was assayed while parameters like Temperature, pH, Nitrogen, Phosphorus, Potassium and Total Petroleum Hydrocarbon (TPH) contents were monitored throughout the experimental period. Microbial analyses such as Total Heterotrophic Bacteria (THB), Total Heterotrophic Fungi (THF), Hydrocarbon Utilizing Bacteria (HUB) and Hydrocarbon Utilizing Fungi (HUF) were recorded. Bioremediation efficiency was estimated from percentage (%) reduction of Total Petroleum Hydrocarbon (TPH) from day 1 to the residual hydrocarbon at day 56 of bio- augmentation/ biostimulation plots with the control.Results: Results revealed actual amount of remediated hydrocarbon and % Bioremediation Efficiency at 56 days in the different treatment plots (initial TPH contamination value of 8729.00mg/kg) in a decreasing order as follows: CS+Muc (8599.19mg/kg; 33.66%) > CS+Asp+Muc (8357.31mg/kg; 33.04%) > CS+Asp (8341.58mg/kg; 32.98%) > CTRL 2 -CS (Polluted soil without amendment) (81.06mg/kg; 0.32%). Microbiological results After fifty-six (56) days of bioremediation monitoring; %HUB were as follows; CS+Asp+Muc (45.30%) > CS+Asp (40.32%) > CS+Muc (35.01%) > CTRL 2 –CS (30.43%) > CTRL 1 – US (0%). These results indicate that the presence of the contaminated crude oil stimulated and sustained the growth of Hydrocarbon Utilizing Bacteria (HUB) in the contaminated plots (P2 - P3); more so, the higher growth in the enhanced bio-augmented plots (P3 – P5) shows the positive impact of fungal bio-augmentation in bioremediation of crude oil polluted soil. It was further observed that treatment plots with higher HUB or HUF had higher percentage (%) bioremediation efficiency; that is, the higher the sustained HUB and HUF population, the higher the %Bioremediation process. Hydrocarbon Utilizing Bacteria (Log10 CFU/g): CS+Asp (4.20) (Day 35) > CS+Muc+Asp (4.18) (Day 35) > CS+Muc (4.08) (Day 28) > CTRL 2 – CS (3.95) (Day 21) > CTRL 1 – US (3.78) (Day 35). (Fig. 3). Hydrocarbon Utilizing Fungi (Log10 CFU/g): CS+Asp (4.68) (Day 35) > CS+Muc+Asp (4.58) (Day 35) > CS+Muc (4.48) (Day 35) > CTRL 2 – CS (4.23) (Day 21) > CTRL 1 – US (2.85) (Day 42).Conclusion: Study showed that bioremediation of crude oil-contaminated soils with Bioaugmenting fungus singly may be more effective than combination with others depending on the type of substrate used, nature of the hydrocarbon utilizing organism and environmental conditions prevalent as seen in Mucor racemosus having higher bioremediation potential than when combined with Aspergillus niger. Notably, Hydrocarbon Utlilizing Bacteria (HUB) and Hydrocarbon Utilizing Fungi (HUF) which are the key players in Bioremediation has its peak count value on Day 35, this confers that nutrient renewal on bioremediation site should be at interval of 35 days for continuous effective bioremediation of hydrocarbon pollutants. It is therefore recommended that single microbes of high bioremediation potential could be used since its more effective than consortium of many hydrocarbon utilizing microbes. Also, nutrient or bio-augmenting microbes’ renewal on bioremediation site should be at an interval of 35 days for continuous effective bioremediation of hydrocarbon pollutants.
机译:目的:评估粘膜术中的肌肉修复潜力,尼日利亚的开放领域原油污染土壤中的粘膜污染土壤。?研究:该研究采用了实验设计,对数据和解释的统计分析.Place和持续时间:河流州立大学示范农田在NKPOLU-Oroworukwo,英里3港口港口港口地区,用于本研究。该土地位于5°4°48'18.50“N和纬度6〜(?)58'39.12”e测量5.4864 m x 5.1816 m,总面积为28.4283平方米。 MyCoreMiation过程监测持续了56天,分析每周进行7天的间隔进行。水域学)并在农业土壤中形成和映射,每种剧集被污染22122.25克原油除了控制1和污染后6天,污染6天,以适当的污染和暴露于自然环境因素,以模仿原油溢出位点。在第七天生物增强过程开始使用两(2)个真菌分离株即Aspergillus niger [Asp]和Mucor Rasemosus [MUC])。两(2)个控制图(P1:未受污染和未加工的土壤 - Ctrl 1 US)和P2:原油污染但未达到的土壤 - Ctrl 2 CS); P3 = P5被污染和修正/生物化/生物化(P3:Cs + Asp,P4:Cs + Muc,P5:CS + Asp + Muc分别。污染前后的土壤谱进行测定,同时测定污染,同时参数如温度,pH,氮,磷,在整个实验期内监测钾和总石油烃(TPH)含量。记录了诸如全诊断细菌(THB),总异养真菌(THF),利用菌(HUB)和利用真菌(HUF)的烃类烃类的微生物分析。从生物增强/消化刺激图的第56天从第1天到残留烃的总石油烃(TPH)的百分比(%)估计生物修复效率估计。结果:结果显示了实际烃和%生物化的实际量效率在56天内的不同处理地块(初始TPH污染值8729.00mg / kg),下降顺序:Cs + Muc(8599.19mg / kg; 33.66%)> Cs + Asp + Muc (8357.31mg / kg; 33.04%)> CS + ASP(8341.58mg / kg; 32.98%)> Ctrl 2 -Cs(无需修正的污染土壤)(81.06mg / kg; 0.32%)。生物修复监测中五十六(56)天后的微生物效果; %集线器如下; Cs + Asp + MUC(45.30%)> Cs + Asp(40.32%)> Cs + MUC(35.01%)> Ctrl 2 -Cs(30.43%)> Ctrl 1 - US(0%)。这些结果表明,污染的原油的存在刺激并持续使用污染图中的烃(毂)的生长(p2 - p3);此外,增强的生物增强地块(P3 - P5)的较高增长显示了真菌生物增强在原油污染土壤生物修复中的积极影响。进一步观察到,具有较高轮毂或HUF的处理地块具有较高的百分比(%)生物化效率;也就是说,持续的枢纽和HUF群体越高,生物修复过程越高。利用细菌的碳氢化合物(log10 cfu / g):cs + asp(4.20)(第35天)> cs + muc + asp(4.18)> cs + muc(4.08)(第28天)> Ctrl 2 - Cs( 3.95)(第21天)> Ctrl 1 - US(3.78)(第35天)。 (图3)。利用真菌的碳氢化合物(log10 cfu / g):cs + asp(4.68)(第35天)> cs + muc + asp(4.58)> cs + muc(4.48)(第35天)> Ctrl 2 - Cs( 4.23)(第21天)> Ctrl 1 - US(2.85)(第42天)。结论:研究表明,根据所用基材的类型,原油污染土壤的生物污染土壤的生物化可能比与他人的组合更有效,利用生物和环境条件的烃类的性质,如粘膜术中所见,具有较高的生物修复潜力,而不是与Aspergillus尼日尔结合时。值得注意的是,利用真菌(HUF)的碳氢化合物utlilized细菌(毂)和烃是生物修复的关键参与者的第35天的峰值计数值,这赋予生物修复现场上的营养更新应在35天的间隔,以进行连续有效的生物修复。碳氢化合物污染物。因此,建议可以使用比许多碳氢化合物的联盟更有效,因此可以使用高生物修复潜力的单细胞微生物。此外,生物修复位点上的营养素或生物增强微生物的更新应在35天的间隔,以进行碳氢化合物污染物的持续有效生物修复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号