...
首页> 外文期刊>Machine Learning and Knowledge Extraction >On the Scale Invariance in State of the Art CNNs Trained on ImageNet
【24h】

On the Scale Invariance in State of the Art CNNs Trained on ImageNet

机译:关于Imagenet训练的最新状态的规模不变性

获取原文
           

摘要

The diffused practice of pre-training Convolutional Neural Networks (CNNs) on large natural image datasets such as ImageNet causes the automatic learning of invariance to object scale variations. This, however, can be detrimental in medical imaging, where pixel spacing has a known physical correspondence and size is crucial to the diagnosis, for example, the size of lesions, tumors or cell nuclei. In this paper, we use deep learning interpretability to identify at what intermediate layers such invariance is learned. We train and evaluate different regression models on the PASCAL-VOC (Pattern Analysis, Statistical modeling and ComputAtional Learning-Visual Object Classes) annotated data to (i) separate the effects of the closely related yet different notions of image size and object scale, (ii) quantify the presence of scale information in the CNN in terms of the layer-wise correlation between input scale and feature maps in InceptionV3 and ResNet50, and (iii) develop a pruning strategy that reduces the invariance to object scale of the learned features. Results indicate that scale information peaks at central CNN layers and drops close to the softmax, where the invariance is reached. Our pruning strategy uses this to obtain features that preserve scale information. We show that the pruning significantly improves the performance on medical tasks where scale is a relevant factor, for example for the regression of breast histology image magnification. These results show that the presence of scale information at intermediate layers legitimates transfer learning in applications that require scale covariance rather than invariance and that the performance on these tasks can be improved by pruning off the layers where the invariance is learned. All experiments are performed on publicly available data and the code is available on GitHub.
机译:预训练卷积神经网络(CNNS)的漫射实践在诸如想象网的大型自然图像数据集上导致自动学习与对象比例变化的不变性。然而,这可能对医学成像有害,其中像素间隔具有已知的物理对应性,并且尺寸对于诊断至关重要,例如,病变,肿瘤或细胞核的尺寸。在本文中,我们使用深入学习的解释性来识别在学习的中间层的中间层。我们在Pascal-VOC上培训和评估不同的回归模型(图案分析,统计建模和计算学习 - Visual对象类)向(i)分别对图像尺寸和对象量表的密切相关且不同概念的效果分开( ii)根据Inceptionv3和Reset50中的输入刻度和特征映射之间的层面相关性来量化CNN中的比例信息的存在,并且(iii)开发一种修剪策略,其降低了对学习特征的对象比例的不变性。结果表明,中央CNN层的比例信息峰值靠近Softmax,达到了不变性的情况。我们的修剪策略使用它来获取保留规模信息的功能。我们表明,修剪显着提高了医学任务的性能,其中规模是相关因子,例如用于回归乳房组织学图像放大倍数。这些结果表明,中间层的规模信息的存在合法性在需要规模协方差而不是不变性的应用中的转移学习,并且可以通过从学习不变性的层中进行修剪来改善这些任务的性能。所有实验都是关于公开的数据进行的,并且在GitHub上提供代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号