首页> 外文期刊>Friction >Simulation of the fatigue-wear coupling mechanism of an aviation gear
【24h】

Simulation of the fatigue-wear coupling mechanism of an aviation gear

机译:航空齿轮疲劳磨损耦合机构的仿真

获取原文
           

摘要

The contact fatigue of aviation gears has become more prominent with greater demands for heavy-duty and high-power density gears. Meanwhile, the coexistence of tooth contact fatigue damage and tooth profile wear leads to a complicated competitive mechanism between surface-initiated failure and subsurface-initiated contact fatigue failures. To address this issue, a fatigue-wear coupling model of an aviation gear pair was developed based on the elastic-plastic finite element method. The tooth profile surface roughness was considered, and its evolution during repeated meshing was simulated using the Archard wear formula. The fatigue damage accumulation of material points on and underneath the contact surface was captured using the Brown-Miller-Morrow multiaxial fatigue criterion. The elastic-plastic constitutive behavior of damaged material points was updated by incorporating the damage variable. Variations in the wear depth and fatigue damage around the pitch point are described, and the effect of surface roughness on the fatigue life is addressed. The results reveal that whether fatigue failure occurs initially on the surface or sub-surface depends on the level of surface roughness. Mild wear on the asperity level alleviates the local stress concentration and leads to a longer surface fatigue life compared with the result without wear.
机译:航空齿轮的接触疲劳具有更大的对重型和高功率密度齿轮的需求。同时,牙齿接触疲劳损坏和牙齿轮廓磨损的共存导致表面引发的失效和地下发起的接触疲劳失败之间的复杂竞争机制。为了解决这个问题,基于弹性塑料有限元法开发了航空齿轮对的疲劳磨损耦合模型。考虑牙齿轮廓表面粗糙度,使用Archard磨损配方模拟重复啮合期间的演化。使用棕米勒 - 明天的多轴疲劳标准捕获接触表面上和下方的材料点造成疲劳损伤。通过结合损伤变量,更新了损坏材料点的弹性塑性本构型行为。描述了俯仰点围绕磨损深度和疲劳损伤的变化,并解决了表面粗糙度对疲劳寿命的影响。结果表明,最初发生疲劳失败是否在表面或子表面上取决于表面粗糙度的水平。温和的磨损在粗糙度水平上减轻了局部应力集中,并导致较长的表面疲劳寿命与没有磨损的结果相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号