首页> 中文期刊> 《摩擦(英文版)》 >Simulation of the fatigue-wear coupling mechanism of an aviation gear

Simulation of the fatigue-wear coupling mechanism of an aviation gear

         

摘要

The contact fatigue of aviation gears has become more prominent with greater demands for heavy-duty and high-power density gears.Meanwhile,the coexistence of tooth contact fatigue damage and tooth profile wear leads to a complicated competitive mechanism between surface-initiated failure and subsurface-initiated contact fatigue failures.To address this issue,a fatigue-wear coupling model of an aviation gear pair was developed based on the elastic-plastic finite element method.The tooth profile surface roughness was considered,and its evolution during repeated meshing was simulated using the Archard wear formula.The fatigue damage accumulation of material points on and underneath the contact surface was captured using the Brown-Miller-Morrow multiaxial fatigue criterion.The elastic-plastic constitutive behavior of damaged material points was updated by incorporating the damage variable.Variations in the wear depth and fatigue damage around the pitch point are described,and the effect of surface roughness on the fatigue life is addressed.The results reveal that whether fatigue failure occurs initially on the surface or sub-surface depends on the level of surface roughness.Mild wear on the asperity level alleviates the local stress concentration and leads to a longer surface fatigue life compared with the result without wear.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号