...
首页> 外文期刊>Atmospheric Measurement Techniques Discussions >HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling
【24h】

HOx radical chemistry in oxidation flow reactors with low-pressure mercury lamps systematically examined by modeling

机译:通过建模系统地检查低压汞灯氧化流量反应器中的HOX激进化学

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Oxidation flow reactors (OFRs) using OH produced from low-pressure Hg lamps at 254 nm (OFR254) or both 185 and 254 nm (OFR185) are commonly used in atmospheric chemistry and other fields. OFR254 requires the addition of externally formed O3 since OH is formed from O3 photolysis, while OFR185 does not since O2 can be photolyzed to produce O3, and OH can also be formed from H2O photolysis. In this study, we use a plug-flow kinetic model to investigate OFR properties under a very wide range of conditions applicable to both field and laboratory studies. We show that the radical chemistry in OFRs can be characterized as a function of UV light intensity, H2O concentration, and total external OH reactivity (OHRext, e.g., from volatile organic compounds (VOCs), NOx, and SO2). OH exposure is decreased by added external OH reactivity. OFR185 is especially sensitive to this effect at low UV intensity due to low primary OH production. OFR254 can be more resilient against OH suppression at high injected O3 (e.g., 70 ppm), as a larger primary OH source from O3, as well as enhanced recycling of HO2 to OH, make external perturbations to the radical chemistry less significant. However if the external OH reactivity in OFR254 is much larger than OH reactivity from injected O3, OH suppression can reach 2 orders of magnitude. For a typical input of 7 ppm O3 (OHRO3 = 10 s?1), 10-fold OH suppression is observed at OHRext ~ 100 s?1, which is similar or lower than used in many laboratory studies. The range of modeled OH suppression for literature experiments is consistent with the measured values except for those with isoprene. The finding on OH suppression may have important implications for the interpretation of past laboratory studies, as applying OHexp measurements acquired under different conditions could lead to over a 1-order-of-magnitude error in the estimated OHexp. The uncertainties of key model outputs due to uncertainty in all rate constants and absorption cross-sections in the model are within ±25 % for OH exposure and within ±60 % for other parameters. These uncertainties are small relative to the dynamic range of outputs. Uncertainty analysis shows that most of the uncertainty is contributed by photolysis rates of O3, O2, and H2O and reactions of OH and HO2 with themselves or with some abundant species, i.e., O3 and H2O2. OHexp calculated from direct integration and estimated from SO2 decay in the model with laminar and measured residence time distributions (RTDs) are generally within a factor of 2 from the plug-flow OHexp. However, in the models with RTDs, OHexp estimated from SO2 is systematically lower than directly integrated OHexp in the case of significant SO2 consumption. We thus recommended using OHexp estimated from the decay of the species under study when possible, to obtain the most appropriate information on photochemical aging in the OFR. Using HOx-recycling vs. destructive external OH reactivity only leads to small changes in OHexp under most conditions. Changing the identity (rate constant) of external OH reactants can result in substantial changes in OHexp due to different reductions in OH suppression as the reactant is consumed. We also report two equations for estimating OH exposure in OFR254. We find that the equation estimating OHexp from measured O3 consumption performs better than an alternative equation that does not use it, and thus recommend measuring both input and output O3 concentrations in OFR254 experiments. This study contributes to establishing a firm and systematic understanding of the gas-phase HOx and Ox chemistry in these reactors, and enables better experiment planning and interpretation as well as improved design of future reactors.
机译:氧化流量反应器(OFRS)使用由254nm(OFR254)或185和254nm(OFR185)的低压Hg灯产生的OH产生的氧化物液相同在大气化学和其他领域。 OFR254需要添加外部形成的O3,因为OH由O3光解形成,而OFR185不能光解以产生O 3以产生O 3,并且OH也可以由H2O光解形成。在这项研究中,我们使用插头流动式模型来研究适用于跨场和实验室研究的非常广泛的条件下的IR性能。我们表明,OFR中的激进化学物质的特征可以表征为UV光强度,H 2 O浓度和总外部OH反应性(OHREXE,例如,来自挥发性有机化合物(VOC),NOx和SO2)的功能。通过增加外部OH反应性降低OH暴露。由于低初级OH生产,OFR185对这种效果特别敏感。 OFR254在高注射的O 3(例如,70ppm)下可以更加弹性,作为来自O 3的较大的初级OH源,以及HO2至OH的再循环,使外部扰动对自由基化学不太显着。然而,如果OFR254中的外部OH反应性远大于OH反应性,则OH抑制可以达到2个峰值。对于7ppm O 3(OHRO3 =10s≤1)的典型输入,在OHREXT〜100 S'1处观察到10倍OH抑制,其与许多实验室研究中的类似或低于使用。文献实验的模型OH抑制范围与除含异戊二烯的值外的测量值一致。 OH抑制的发现可能对过去实验室研究的解释具有重要意义,因为在不同条件下获得的应用OHExp测量可能导致估计OHExp中的1阶级误差。由于所有速率常数和模型中的吸收横截面的不确定性导致的关键模型输出的不确定性在oh暴露的±25%以内,其他参数的±60%内。这些不确定性相对于输出的动态范围很小。不确定性分析表明,大多数不确定性是由O3,O 2和H 2 O的光解率和OH和HO2的反应以及一些丰富的物种,即O 3和H 2 O 2贡献。 OHExp由直接集成计算并在具有层流的模型中从SO2衰减估计,并且测量的停留时间分布(RTD)通常在插头流OHExp中的2倍。然而,在具有RTD的模型中,从SO2估计的OHExp被系统地低于在显着SO2消耗的情况下直接集成OHExp。因此,我们推荐使用从研究中的物种的衰减估计的OHEP估计,以获得关于IFR中的光化学老化的最合适的信息。使用Hox回收与破坏性外部OH反应性仅在大多数条件下导致OHEXP的小变化。由于反应物被消耗,改变外部OH反应物的身份(速率常数)可以导致OHEP抑制中的不同减少导致OHEXP的显着变化。我们还报告了两个方程,以估算OH IFT254 of oh曝光。我们发现从测量的O3消耗估计OHExp的等式比不使用它的替代方程更好地执行,因此建议在OFR254实验中测量输入和输出O3浓度。本研究有助于建立对这些反应器中的气相HOX和OX化学的坚定和系统的理解,并实现更好的实验计划和解释以及未来反应堆的改进设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号