首页> 外文期刊>Atmospheric Chemistry and Physics Discussions >Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen
【24h】

Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen

机译:北极C(Concordia),南极洲雪光学特性; 对雪排放的影响和反应性氮的雪化学

获取原文
           

摘要

Measurements of e-folding depth, nadir reflectivity and stratigraphy of the snowpack around Concordia station (Dome C, 75.10° S, 123.31° E) were undertaken to determine wavelength dependent coefficients (350 nm to 550 nm) for light scattering and absorption and to calculate potential fluxes (depth-integrated production rates) of nitrogen dioxide (NO2) from the snowpack due to nitrate photolysis within the snowpack. The stratigraphy of the top 80 cm of Dome C snowpack generally consists of three main layers:- a surface of soft windpack (not ubiquitous), a hard windpack, and a hoar-like layer beneath the windpack(s). The e-folding depths are ~10 cm for the two windpack layers and ~20 cm for the hoar-like layer for solar radiation at a wavelength of 400 nm; about a factor 2–4 larger than previous model estimates for South Pole. The absorption cross-section due to impurities in each snowpack layer are consistent with a combination of absorption due to black carbon and HULIS (HUmic LIke Substances), with amounts of 1–2 ng g?1 of black carbon for the surface snow layers. Depth-integrated photochemical production rates of NO2 in the Dome C snowpack were calculated as 5.3 1012 molecules m?2 s?1, 2.3 1012 molecules m?2 s1 and 8 1011 molecules m?2 s1 for clear skies and solar zenith angles of 60°, 70° and 80° respectively using the TUV-snow radiative-transfer model. Depending upon the snowpack stratigraphy, a minimum of 85% of the NO2 may originate from the top 20 cm of the Dome C snowpack. It is found that on a multi-annual time-scale photolysis can remove up to 80% of nitrate from surface snow, confirming independent isotopic evidence that photolysis is an important driver of nitrate loss occurring in the EAIS (East Antarctic Ice Sheet) snowpack. However, the model cannot completely account for the total observed nitrate loss of 90–95 % or the shape of the observed nitrate concentration depth profile. A more complete model will need to include also physical processes such as evaporation, re-deposition or diffusion between the quasi-liquid layer on snow grains and firn air to account for the discrepancies.
机译:电子折叠深度,最低点的反射率和周围协和站积雪(圆顶C,75.10°S,123.31°E)的地层的测量进行确定波长依赖系数(350nm至550nm)的光散射和吸收,并计算从积雪二氧化氮(NO 2)的电势通量(深度集成生产速率)由于积雪内硝酸盐光解。顶部80厘米圆顶的C通常,积雪地层由三个主要层: - 软windpack(未无处不),硬盘windpack的表面上,和一个灰白色状的windpack(S)的下方层。电子折叠深度约10厘米为2 windpack层和约20厘米为灰白色状层在400nm的波长的太阳辐射;约一个因素2-4比南极以前的模型估计更大。吸收横截面由于每个积雪层中的杂质由于炭黑和HULIS(腐殖酸样物质)是具有吸收的组合一致,1-2毫微克量△炭黑的表面雪层1。计算在冰穹C积雪NO2的深度集成光化学生产速率为5.3 1012分子M?2个S?1,2.3 1012分子毫升2 s1和8 1011分子毫升2 S1为晴朗的天空和60太阳能天顶角°,70°和80°分别使用TUV-雪辐射传递模型。取决于积雪地层,最小的NO2的85%可从冰穹C积雪的上部20 cm起源。研究发现,在一个多年度时间尺度光解可以从表层雪去除高达硝酸盐的80%,证实了独立的同位素证据表明,光解是在EAIS(南极东部冰盖)的积雪发生的硝酸盐流失的重要驱动力。然而,该模型不能完全占90-95%的总观察到的硝酸损失或观察到的硝酸盐浓度的深度分布的形状。的更完整的模型将需要还包括物理方法如上雪粒粒雪空气有关不符准液体层和帐户间蒸发,再沉积或扩散。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号