...
首页> 外文期刊>Atmospheric chemistry and physics >Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen
【24h】

Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen

机译:南极圆顶C(Concordia)的雪光学特性;氮对积雪排放和积雪化学的影响

获取原文
           

摘要

Measurements of e-folding depth, nadir reflectivity and stratigraphy of thesnowpack around Concordia station (Dome C, 75.10° S, 123.31° E) wereundertaken to determine wavelength dependent coefficients (350 nm to 550 nm)for light scattering and absorption and to calculate potential fluxes(depth-integrated production rates) of nitrogen dioxide (NO2) from thesnowpack due to nitrate photolysis within the snowpack. The stratigraphy ofthe top 80 cm of Dome C snowpack generally consists of three main layers:- asurface of soft windpack (not ubiquitous), a hard windpack, and a hoar-likelayer beneath the windpack(s). The e-folding depths are ~10 cm for thetwo windpack layers and ~20 cm for the hoar-like layer for solarradiation at a wavelength of 400 nm; about a factor 2–4 larger than previousmodel estimates for South Pole. The absorption cross-section due toimpurities in each snowpack layer are consistent with a combination ofabsorption due to black carbon and HULIS (HUmic LIke Substances), withamounts of 1–2 ng g?1 of black carbon for the surface snow layers.Depth-integrated photochemical production rates of NO2 in the Dome Csnowpack were calculated as 5.3 × 1012 molecules m?2 s?1,2.3 × 1012 molecules m?2 s−1 and 8 × 1011 molecules m?2 s−1 for clear skies and solar zenithangles of 60°, 70° and 80° respectivelyusing the TUV-snow radiative-transfer model. Depending upon the snowpackstratigraphy, a minimum of 85% of the NO2 may originate from the top20 cm of the Dome C snowpack. It is found that on a multi-annual time-scalephotolysis can remove up to 80% of nitrate from surface snow, confirmingindependent isotopic evidence that photolysis is an important driver ofnitrate loss occurring in the EAIS (East Antarctic Ice Sheet) snowpack.However, the model cannot completely account for the total observed nitrateloss of 90–95 % or the shape of the observed nitrate concentration depth profile. A morecomplete model will need to include also physical processes such asevaporation, re-deposition or diffusion between the quasi-liquid layer onsnow grains and firn air to account for the discrepancies.
机译:测量康科迪亚台站(Dome C,75.10°S,123.31°E)周围雪堆的 e 折叠深度,最低反射率和地层,以确定光的波长相关系数(350 nm至550 nm)散射和吸收并计算雪堆中硝酸盐光解引起的雪堆中二氧化氮(NO 2 )的潜在通量(深度综合生产率)。圆顶C积雪的顶部80厘米的地层通常由三个主要层组成:-软积雪的表面(并非普遍存在),硬积雪的表面以及积雪下的灰白色层。对于两个风包层,在400 nm波长下的太阳辐射的 e 折叠深度为〜10 cm,而对于灰白层的 e折叠深度为〜20 cm;比以前对南极模型的估计值要大2至4倍。每个积雪层中由于杂质引起的吸收横截面与黑碳和HULIS(腐殖质)的吸收相结合,在此过程中,黑碳的吸收量为1-2 ng g ?1 。 Dome Csnowpack中深度整合的NO 2 的光化学生产率为5.3×10 12 分子m ?2 s ?1 ,2.3×10 12 分子m ?2 s -1 和8×10 11使用TUV-雪辐射传输模型,分子m ?2 s -1 分别用于晴朗的天空和60°,70°和80°的太阳天顶角。根据积雪地层的不同,至少<85%的NO 2 可能来自Dome C积雪的顶部20厘米。研究发现,在多年的时间尺度上,光解可以从表面积雪中去除高达80%的硝酸盐,这证实了独立的同位素证据表明光解是EAIS(南极冰原)积雪中硝酸盐损失的重要驱动因素。该模型不能完全解决90-95%的总硝酸盐损失或硝酸盐浓度深度分布图的形状。一个更完整的模型将还需要包括物理过程,例如雪汽颗粒上的准液体层与烧成的空气之间的酶汽化,再沉积或扩散,以弥补差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号