首页> 外文期刊>The Journal of biological chemistry >Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs)
【24h】

Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs)

机译:鉴定驱动真菌裂解多糖单氧基酶(LPMOS)的底物特异性的分子测定素

获取原文
           

摘要

Understanding enzymatic breakdown of plant biomass is crucial to develop nature-inspired biotechnological processes. Lytic polysaccharide monooxygenases (LPMOs) are microbial enzymes secreted by fungal saprotrophs involved in carbon recycling. LPMOs modify biomass by oxidatively cleaving polysaccharides, thereby enhancing the efficiency of glycoside hydrolases. Fungal AA9 LPMOs are active on cellulose, but some members also display activity on hemicelluloses and/or oligosaccharides. Although the active site subsites are well defined for a few model LPMOs, the molecular determinants driving broad substrate specificity are still not easily predictable. Based on bioinformatic clustering and sequence alignments, we selected seven fungal AA9 LPMOs that differ in the amino-acid residues constituting their subsites. Investigation of their substrate specificities revealed that all these LPMOs are active on cellulose and cello-oligosaccharides, as well as plant cell wall–derived hemicellulosic polysaccharides, and carry out C4 oxidative cleavage. The product profiles from cello-oligosaccharide degradation suggest that the subtle differences in amino-acid sequence within the substrate-binding loop regions lead to different preferred binding modes. Our functional analyses allowed us to probe the molecular determinants of substrate binding within two AA9 LPMO subclusters. Many wood-degrading fungal species rich in AA9 genes have at least one AA9 enzyme with structural loop features that allow recognition of short β-(1,4)–linked glucan chains. Time-course monitoring of these AA9 LPMOs on cello-oligosaccharides also provides a useful model system for mechanistic studies of LPMO catalysis. These results are valuable for the understanding of LPMO contribution to wood decaying process in nature and for the development of sustainable biorefineries.
机译:了解植物生物质的酶分解对于开发自然启发的生物技术过程至关重要。 Lytic多糖单氧基酶(LPMOS)是由涉及碳回收的真菌皂细胞分泌的微生物酶。 LPMOS通过氧化裂解多糖改变生物量,从而提高糖苷水解酶的效率。真菌AA9 LPMOS在纤维素上活跃,但有些成员还会显示出半纤维素和/或低聚糖的活性。虽然有效的位点套管对于少数模型LPMO来说是很好的,但是驱动宽底物特异性的分子测定剂仍然不易预测。基于生物信息聚类和序列比对,我们选择了七种真菌AA9 LPMO,其氨基酸残基不同于构成其底座。研究其基质特异性显示,所有这些LPMO都在纤维素和细胞 - 寡糖上活性,以及​​植物细胞壁衍生的半纤维素多糖,并进行C4氧化切割。来自大通 - 寡糖降解的产品谱表明,基板结合环区域内的氨基酸序列的微妙差异导致不同的优选结合模式。我们的功能分析使我们探讨了两个AA9 LPMO亚型蛋白内底物结合的分子决定簇。许多富含AA9基因的木材降解的真菌物种具有至少一种具有结构环特征的AA9酶,其允许识别短β-(1,4)的葡聚糖链。这些AA9 LPMOS上的时间过程监测在细胞 - 低聚糖上还提供了LPMO催化机械研究的有用模型系统。这些结果对于理解LPMO对木材腐烂过程的贡献,以及可持续生物寄生事件的发展是有价值的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号