...
首页> 外文期刊>Nature Communications >The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase
【24h】

The trajectory of intrahelical lesion recognition and extrusion by the human 8-oxoguanine DNA glycosylase

机译:人8-氧化阳氨酸DNA糖基糖基烯基凝固识别和挤出的轨迹

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Efficient search for DNA damage embedded in vast expanses of the DNA genome presents one of the greatest challenges to DNA repair enzymes. We report here crystal structures of human 8-oxoguanine (oxoG) DNA glycosylase, hOGG1, that interact with the DNA containing the damaged base oxoG and the normal base G while they are nested in the DNA helical stack. The structures reveal that hOGG1 engages the DNA using different protein-DNA contacts from those observed in the previously determined lesion recognition complex and other hOGG1-DNA complexes. By applying molecular dynamics simulations, we have determined the pathways taken by the lesion and normal bases when extruded from the DNA helix and their associated free energy profiles. These results reveal how the human oxoG DNA glycosylase hOGG1 locates the lesions inside the DNA helix and facilitates their extrusion for repair. DNA glycosylases are lesion-specific enzymes that recognize specific nucleobase damages and catalyze their excision through cleavage of the glycosidic bond. Here, the authors present the crystal structures of human 8-oxoguanine (oxoG) DNA glycosylase bound to undamaged DNA and to DNA containing an intrahelical oxoG lesion and further analyse these structures with molecular dynamics simulations, which allows them to characterise the base-extrusion pathways.
机译:有效地搜索嵌入在大量DNA基因组中的DNA损伤呈现为DNA修复酶的最大挑战之一。我们在此报告人8-氧代(Oxog)DNA糖基糖基糖酶,Hogg1的晶体结构与含有受损碱氧气和正常基础G的DNA相互作用,同时嵌套在DNA螺旋堆叠中。该结构揭示了Hogg1将DNA与来自先前测定的病变识别复合物和其他霍格1-DNA复合物中观察到的不同蛋白质-DNA接触。通过应用分子动力学模拟,我们确定了在从DNA螺旋和相关的自由能型材挤出时由病变和正常碱采集的途径。这些结果揭示了人氧气DNA糖基糖蛋白术的霍格1如何定位DNA螺旋内部的病变,并促进其挤压进行修复。 DNA糖基酶是损伤特异性酶,其识别特异性核碱基损伤并通过切割糖苷键的切割催化它们的切除。在这里,作者介绍了与未损坏的DNA结合的人8-氧化碱(OXOG)DNA糖基糖酶的晶体结构和含有肝内氧气病变的DNA,并进一步分析这些结构,分子动力学模拟,允许它们表征基础挤出途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号