首页> 外文期刊>Scientific reports. >Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling
【24h】

Thermal transport across grain boundaries in polycrystalline silicene: A multiscale modeling

机译:多晶硅晶界晶界的热传输:多尺度建模

获取原文
           

摘要

During the fabrication process of large scale silicene, through common chemical vapor deposition (CVD) technique, polycrystalline films are quite likely to be produced, and the existence of Kapitza thermal resistance along grain boundaries could result in substantial changes of their thermal properties. In the present study, the thermal transport along polycrystalline silicene was evaluated by performing a multiscale method. Non-equilibrium molecular dynamics simulations (NEMD) was carried out to assess the interfacial thermal resistance of various constructed grain boundaries in silicene. The effects of tensile strain and the mean temperature on the interfacial thermal resistance were also examined. In the following stage, the effective thermal conductivity of polycrystalline silicene was investigated considering the effects of grain size and tensile strain. Our results indicate that the average values of Kapitza conductance at grain boundaries at room temperature were estimated to be nearly 2.56?×?109?W/m2?K and 2.46?×?109?W/m2?K through utilizing Tersoff and Stillinger-Weber interatomic potentials respectively. Also, in spite of the mean temperature, whose increment does not change Kapitza resistance, the interfacial thermal resistance could be controlled by applying strain. Furthermore, it was found that by tuning the grain size of polycrystalline silicene, its thermal conductivity could be modulated up to one order of magnitude.
机译:在大规模硅的制造过程中,通过常见化学气相沉积(CVD)技术,很可能产生多晶膜,并且沿晶界的Kapitza热阻的存在可能导致其热性能的显着变化。在本研究中,通过进行多尺度方法评价沿多晶硅硅的热传输。进行非平衡分子动力学模拟(NEMD),以评估硅片中各种构造的晶界的界面热阻。还检查了拉伸应变的影响和平均温度对界面热阻的影响。在以下阶段,考虑到晶粒尺寸和拉伸菌株的影响,研究了多晶硅的有效导热率。我们的结果表明,在室温下晶界的Kapitza电导平均值估计接近2.56?×109?W / M 2×k和2.46?×109?w / m 2?k通过利用Tersoff和Still-韦伯内部潜力分别。此外,尽管平均温度,其增量不改变Kapitza电阻,但可以通过施加菌株来控制界面热阻。此外,发现通过调节多晶硅的晶粒尺寸,可以调节其导热率至一大阶数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号