首页> 外文期刊>Scientific reports. >Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks
【24h】

Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks

机译:使用生成的对冲网络(Cyclegan)来提高CT分割任务中的概括性的数据增强

获取原文
           

摘要

Labeled medical imaging data is scarce and expensive to generate. To achieve generalizable deep learning models large amounts of data are needed. Standard data augmentation is a method to increase generalizability and is routinely performed. Generative adversarial networks offer a novel method for data augmentation. We evaluate the use of CycleGAN for data augmentation in CT segmentation tasks. Using a large image database we trained a CycleGAN to transform contrast CT images into non-contrast images. We then used the trained CycleGAN to augment our training using these synthetic non-contrast images. We compared the segmentation performance of a U-Net trained on the original dataset compared to a U-Net trained on the combined dataset of original data and synthetic non-contrast images. We further evaluated the U-Net segmentation performance on two separate datasets: The original contrast CT dataset on which segmentations were created and a second dataset from a different hospital containing only non-contrast CTs. We refer to these 2 separate datasets as the in-distribution and out-of-distribution datasets, respectively. We show that in several CT segmentation tasks performance is improved significantly, especially in out-of-distribution (noncontrast CT) data. For example, when training the model with standard augmentation techniques, performance of segmentation of the kidneys on out-of-distribution non-contrast images was dramatically lower than for in-distribution data (Dice score of 0.09 vs. 0.94 for out-of-distribution vs. in-distribution data, respectively, p??0.001). When the kidney model was trained with CycleGAN augmentation techniques, the out-of-distribution (non-contrast) performance increased dramatically (from a Dice score of 0.09 to 0.66, p??0.001). Improvements for the liver and spleen were smaller, from 0.86 to 0.89 and 0.65 to 0.69, respectively. We believe this method will be valuable to medical imaging researchers to reduce manual segmentation effort and cost in CT imaging.
机译:标记的医学成像数据是稀缺和昂贵的。为了实现更广泛的深度学习模型,需要大量数据。标准数据增强是一种提高概括性的方法,并且经常执行。生成的对抗网络提供了一种新的数据增强方法。我们评估CT在CT分段任务中使用Conscangan进行数据增强。使用大型图像数据库,我们训练了一个Cycleangan以将对比度CT图像转换为非对比图像。然后,我们使用训练有素的Cyclean使用这些合成非对比图像来增加我们的培训。与原始数据和合成非对比度图像的组合数据集的U-Net培训相比,我们将U-Net培训的分割性能进行了比较。我们在两个单独的数据集中进一步评估了U-Net分段性能:原始对比度CT数据集,其中创建了哪些分段以及仅包含非对比度CTS的不同医院的第二个数据集。我们将这两个单独的数据集视为分销和分发外部数据集。我们表明,在几个CT分割任务中,性能显着提高,尤其是在分配外(非共用CT)数据中。例如,当用标准增强技术训练模型时,肾脏分段对分发外非对比度图像的分割性的性能大于分布数据(骰子得分为0.09 Vs.094分别分布与分布数据,p?<0.001)。当肾脏模型接受Crycan Tugindation技术训练时,分布外(非对比)性能显着增加(从骰子得分为0.09至0.66,p?<0.001)。肝脏和脾的改善分别为0.86至0.89和0.65至0.69。我们认为这种方法对医学成像研究人员有价值,以减少CT成像的手动分割工作和成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号