...
首页> 外文期刊>Scientific reports. >Understanding Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids by Insights from Molecular Dynamics Simulations
【24h】

Understanding Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids by Insights from Molecular Dynamics Simulations

机译:理解分子动力学模拟中的见解纳米材料在储层液中的钙介导的粘附

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Interest in nanomaterials for subsurface applications has grown markedly due to their successful application in a variety of disciplines, such as biotechnology and medicine. Nevertheless, nanotechnology application in the petroleum industry presents greater challenges to implementation because of the harsh conditions (i.e. high temperature, high pressure, and high salinity) that exist in the subsurface that far exceed those present in biological applications. The most common subsurface nanomaterial failures include colloidal instability (aggregation) and sticking to mineral surfaces (irreversible retention). We previously reported an atomic force microscopy (AFM) study on the calcium-mediated adhesion of nanomaterials in reservoir fluids (S. L. Eichmann and N. A. Burnham, Sci. Rep. 7, 11613, 2017), where we discovered that the functionalized and bare AFM tips showed mitigated adhesion forces in calcium ion rich fluids. Herein, molecular dynamics reveal the molecular-level details in the AFM experiments. Special attention was given to the carboxylate-functionalized AFM tips because of their prominent ion-specific effects. The simulation results unambiguously demonstrated that in calcium ion rich fluids, the strong carboxylate-calcium ion complexes prevented direct carboxylate-calcite interactions, thus lowering the AFM adhesion forces. We performed the force measurement simulations on five representative calcite crystallographic surfaces and observed that the adhesion forces were about two to three fold higher in the calcium ion deficient fluids compared to the calcium ion rich fluids for all calcite surfaces. Moreover, in calcium ion deficient fluids, the adhesion forces were significantly stronger on the calcite surfaces with higher calcium ion exposures. This indicated that the interactions between the functionalized AFM tips and the calcite surfaces were mainly through carboxylate interactions with the calcium ions on calcite surfaces. Finally, when analyzing the order parameters of the tethered functional groups, we observed significantly different behavior of the alkanethiols depending on the absence or presence of calcium ions. These observations agreed well with AFM experiments and provided new insights for the competing carboxylate/calcite/calcium ion interactions.
机译:由于其在各种学科的成功应用,如生物技术和医学,因此对地下应用的纳米材料的兴趣显着增加。尽管如此,石油工业中的纳米技术应用对于实施的苛刻条件(即高温,高压和高盐度)具有远远超过生物应用中存在的那些存在的苛刻条件(即,高温,高压,高盐度)具有更大的挑战。最常见的地下纳米材料故障包括胶体不稳定性(聚集)并粘在矿物表面(不可逆的保留)上。我们之前报道了原子力显微镜(AFM)研究储层液中纳米材料的钙介导的粘附性(SLEICHMANN和NA Burnham,SCI。rep.7,11613,2017),我们发现功能化和裸机的提示在富含钙离子的液体中显示出缓解粘合力。在此,分子动力学揭示了AFM实验中的分子水平细节。由于其突出的离子特异性效应,对羧酸官能化的AFM提示特别注意。仿真结果明确证明,在钙离子富液中,强羧酸钙离子配合物防止了羧酸纤维方解石相互作用,从而降低了AFM粘附力。我们在五个代表性方解石晶体表面上进行了力测量模拟,并且观察到与所有方便表面的钙离子富流体相比,钙离子缺乏流体中的粘附力在含有钙离子缺陷的液中较高。此外,在钙离子缺陷型流体中,在具有较高钙离子曝光的方解石表面上粘附力显着越强。这表明官能化AFM尖端和方解石表面之间的相互作用主要是通过与方解石表面上的钙离子的羧酸盐相互作用。最后,当分析束缚官能团的顺序参数时,我们观察到烷硫醇的显着不同的行为,这取决于钙离子的不存在或存在。这些观察结果与AFM实验一致,并为竞争羧酸盐/方解石/钙离子相互作用提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号