首页> 美国卫生研究院文献>Scientific Reports >Understanding Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids by Insights from Molecular Dynamics Simulations
【2h】

Understanding Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids by Insights from Molecular Dynamics Simulations

机译:通过分子动力学模拟的洞察力了解钙介导的纳米材料在储层流体中的粘附

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interest in nanomaterials for subsurface applications has grown markedly due to their successful application in a variety of disciplines, such as biotechnology and medicine. Nevertheless, nanotechnology application in the petroleum industry presents greater challenges to implementation because of the harsh conditions (i.e. high temperature, high pressure, and high salinity) that exist in the subsurface that far exceed those present in biological applications. The most common subsurface nanomaterial failures include colloidal instability (aggregation) and sticking to mineral surfaces (irreversible retention). We previously reported an atomic force microscopy (AFM) study on the calcium-mediated adhesion of nanomaterials in reservoir fluids (S. L. Eichmann and N. A. Burnham, Sci. Rep. 7, 11613, 2017), where we discovered that the functionalized and bare AFM tips showed mitigated adhesion forces in calcium ion rich fluids. Herein, molecular dynamics reveal the molecular-level details in the AFM experiments. Special attention was given to the carboxylate-functionalized AFM tips because of their prominent ion-specific effects. The simulation results unambiguously demonstrated that in calcium ion rich fluids, the strong carboxylate-calcium ion complexes prevented direct carboxylate-calcite interactions, thus lowering the AFM adhesion forces. We performed the force measurement simulations on five representative calcite crystallographic surfaces and observed that the adhesion forces were about two to three fold higher in the calcium ion deficient fluids compared to the calcium ion rich fluids for all calcite surfaces. Moreover, in calcium ion deficient fluids, the adhesion forces were significantly stronger on the calcite surfaces with higher calcium ion exposures. This indicated that the interactions between the functionalized AFM tips and the calcite surfaces were mainly through carboxylate interactions with the calcium ions on calcite surfaces. Finally, when analyzing the order parameters of the tethered functional groups, we observed significantly different behavior of the alkanethiols depending on the absence or presence of calcium ions. These observations agreed well with AFM experiments and provided new insights for the competing carboxylate/calcite/calcium ion interactions.
机译:由于纳米材料在生物技术和医学等多个领域的成功应用,对用于地下应用的纳米材料的兴趣已显着增长。然而,由于存在于地下的苛刻条件(即高温,高压和高盐度)远远超出生物应用中存在的苛刻条件,因此在石油工业中的纳米技术应用对实施提出了更大的挑战。最常见的地下纳米材料破坏包括胶体不稳定性(聚集)和粘附在矿物表面(不可逆的保留)。我们先前曾报道原子力显微镜(AFM)研究储层流体中钙介导的纳米材料的粘附性(SL Eichmann和NA Burnham,Sci。Rep。7,11613,2017),我们发现功能化且裸露的AFM尖端在富含钙离子的液体中显示出减弱的粘附力。本文中,分子动力学揭示了AFM实验中的分子水平细节。由于它们具有突出的离子特异性作用,因此特别注意了羧酸盐官能化的AFM吸头。模拟结果清楚地表明,在富含钙离子的流体中,强羧酸盐-钙离子络合物阻止了直接的羧酸盐-方解石相互作用,从而降低了AFM粘附力。我们在五个有代表性的方解石晶体表面上进行了力测量模拟,发现对于所有方解石表面,与缺乏钙离子的流体相比,在缺乏钙离子的流体中的附着力要高出约两到三倍。此外,在缺乏钙离子的流体中,在钙离子暴露量较高的方解石表面上,粘附力明显更强。这表明官能化的AFM尖端与方解石表面之间的相互作用主要是通过与方解石表面上的钙离子的羧酸盐相互作用。最后,当分析连接的官能团的顺序参数时,我们观察到链烷硫醇的行为明显不同,这取决于是否存在钙离子。这些观察结果与AFM实验非常吻合,并为竞争的羧酸盐/方解石/钙离子相互作用提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号