首页> 外文期刊>Scientific reports. >Modified tailoring the electronic phase and emergence of midstates in impurity-imbrued armchair graphene nanoribbons
【24h】

Modified tailoring the electronic phase and emergence of midstates in impurity-imbrued armchair graphene nanoribbons

机译:在杂质 - 简译扶手椅石墨烯纳米中修改了剪裁电子阶段和中间人的出现

获取原文
           

摘要

We theoretically address the electronic structure of mono- and simple bi-layer armchair graphene nanoribbons (AGNRs) when they are infected by extrinsic charged dilute impurity. This is done with the aid of the modified tight-binding method considering the edge effects and the Green's function approach. Also, the interplay of host and guest electrons are studied within the full self-consistent Born approximation. Given that the main basic electronic features can be captured from the electronic density of states (DOS), we focus on the perturbed DOS of lattices corresponding to the different widths. The modified model says that there is no metallic phase due to the edge states. We found that the impurity effects lead to the emergence of midgap states in DOS of both systems so that a semiconductor-to-semimetal phase transition occurs at strong enough impurity concentrations and/or impurity scattering potentials. The intensity of semiconductor-to-semimetal phase transition in monolayer (bilayer) ultra-narrow (realistic) ribbons is sharper than bilayers (monolayers). In both lattices, electron-hole symmetry breaks down as a result of induced-impurity states. The findings of this research would provide a base for future experimental studies and improve the applications of AGNRs in logic semiconductor devices in industry.
机译:理论上,当物质加入稀释杂质感染时,理论上,理论上解决了单级和简单的双层扶手椅石墨烯纳米纳米纳米纳米·纳米队(AGNR)的电子结构。考虑到边缘效应和绿色功能方法,借助于修改的紧密结合方法来完成这一点。此外,在完全自我一致的出生近似内研究了主机和客体电子的相互作用。鉴于主要的基本电子特征可以从状态的电子密度(DOS)捕获,我们专注于对应于不同宽度的格格的扰动DOS。修改模型表示,由于边缘状态没有金属相位。我们发现杂质效应导致两种系统的DOS中的中间皮带状态的出现,从而以强足够的杂质浓度和/或杂质散射电位发生半导体到半阶段转变。单层(双层)超窄(现实)带中的半导体到半型相变的强度比双层(单层)更清晰。在晶格中,电子孔对称性由于诱导杂质状态而破裂。该研究的结果将为未来的实验研究提供基础,并改善AGNR在工业中逻辑半导体器件中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号