...
首页> 外文期刊>Journal of bacteriology >Classic Spotlight: Bacteroids—Views of an Enigmatic Bacterial State in Root Nodule Symbiosis through the Centuries
【24h】

Classic Spotlight: Bacteroids—Views of an Enigmatic Bacterial State in Root Nodule Symbiosis through the Centuries

机译:经典聚光灯:通过几个世纪的根结节共生中的神秘细菌状态的诱导细菌状态

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Next Section EDITORIAL Rhizobia form an evolutionarily diverse group of plant symbiotic bacteria belonging to the Alpha- and Betaproteobacteria. These bacteria engage in symbiotic interaction with plants of the Leguminosae family and uniquely with the nonlegume genus Parasponia that culminates in bacterial nitrogen fixation to the benefit of the host (1). The root nodule symbiosis accounts for a large share of these interactions. In the course of this interaction, the newly induced plant organ is colonized by the bacteria, which penetrate the plant tissue through infection threads. These are plant-derived tubules filled with growing and dividing bacteria (2). During release from the infection threads, bacteria become enclosed in a plant-derived membrane and differentiate into so-called bacteroids. These are defined as endosymbiotic, morphologically distinct, nitrogen-fixing bacteria. Bacteroids provide combined nitrogen to the plant in exchange for nutrients. The first accurate morphological description of bacteroids dates back to Martinus Willem Beijerinck in his groundbreaking article describing root nodule bacteria of Vicia (3). He considered bacteroids to develop from bacteria that invade the roots, not as an autonomous formation of the protoplasm of the plant as believed by earlier researchers (3). Beijerinck suggested that during this metamorphic process bacteria gradually lose their ability to reproduce. Debate over the viability and fate of bacteroids lasted over many decades. Early studies also provided divergent results regarding the DNA content of bacteroids (4–7). While some studies reported no differences in DNA content between free-living rhizobia and bacteroids, others reported an increase in DNA content in bacteroids. In a Journal of Bacteriology (JB) paper in 1977, Paau et al. (8) reported flow microfluorometry data unambiguously showing that bacteroids in the Sinorhizobium meliloti-Medicago sativa symbiosis have a higher DNA content than free-living cells. Diverse opinions on the fate and properties of bacteroids can be attributed mostly to the challenging experimental object and biological differences between specific rhizobium-legume interactions. After more than 125 years of further research, it is well known that root nodule symbiosis and bacteroid differentiation come in different flavors. Determinate or indeterminate nodule types are distinguished based on the transient or persistent character of host cell proliferation, respectively (9). Consequently, indeterminate nodules, continuously growing due to a persistent apical meristem, show a gradient of bacterial developmental stages along the nodule. In contrast, bacteria develop rather synchronously in determinate nodules. Terminally differentiated, enlarged, or even branched bacteroids are found mostly in indeterminate nodules, while bacteroids in determinate nodules remain small and are capable of resuming free-living growth (10). In both types of nodules, bacteroids show changes in gene expression and metabolic activity, while large changes in DNA content are found mainly during bacteroid differentiation in indeterminate nodules (10). Advanced electron microscopic analyses have promoted a significantly better understanding of early infection steps, release of bacteria from infection threads, and bacteroid differentiation. From the 1960s to the 1980s, several JB papers made major contributions in this field (11–15). These studies revealed the full spectrum of bacteroid morphologies and types of symbiosome, which is defined as one or more bacteroids enclosed in a peribacteroid membrane. Depending on the host plant, symbiosomes containing either a single bacteriod, e.g., in M. sativa nodules (11, 14), or multiple bacteroids, e.g., in Glycine max and Vigna sinensis nodules (12, 13), were observed. Paau et al. (15) performed a systematic study of the ultrastructure of S. meliloti cells in the different developmental zones of an indeterminate M. sativa nodule. From their fine-grained analysis, the authors concluded that vegetative bacterial cells released from the senescent nodule originate from the reservoir of bacteria in infection threads. They took the view that in spite of bacteroid degeneration, release of infection thread bacteria from senescent nodules increases the bacterial population in the soil, supporting a truly symbiotic relationship. Discovery of antimicrobial nodule-specific cysteine-rich (NCR) peptides in the inverted repeat-lacking clade (IRLC) of legumes and their role in imposing irreversible terminal differentiation onto bacteria has recently opened an exciting new chapter in root nodule symbiosis research (10, 16, 17). This points to an evolutionary trend toward plant dominance over symbionts in this clade of legumes (18) and the importance of a reservoir of bacteria in infection threads capable of resuming growth after release from senescent indeterminate nodules. It is commonly speculated that this reservoir of
机译:下一节编辑根扎比亚形成了属于α和betaprootea的进化植物共生细菌。这些细菌与豆科植物家族的植物进行了共生相互作用,唯一与非身份属Parasponia与非整体属Parasponia一起终止于细菌氮固定对宿主(1)的益处。根结节共生占这些互动的大量份额。在这种相互作用的过程中,新诱导的植物器官被细菌殖民化,其通过感染螺纹穿透植物组织。这些是植物衍生的小管,其填充有生长和分裂细菌(2)。在从感染螺纹释放期间,细菌封闭在植物衍生的膜中并分化为所谓的菌体。这些被定义为内胞胎,形态学上独特的氮固定细菌。菌体为植物提供合并的氮以交换营养素。在他的突破性文章中描述了菌株的第一种准确的组织形态学描述返回Martinus Willem Beijerinck描述了vicia的根瘤菌(3)。他认为从侵入根部的细菌发展菌体,而不是早期研究人员(3)所相信的植物原生质的自主形成。 Beijerinck表明,在这种变质过程中,细菌逐渐失去了他们的繁殖能力。在数十年中持续了对菌株的活力和命运的辩论。早期研究还提供了关于菌体DNA含量的发散结果(4-7)。虽然一些研究报告了自由生物根瘤菌和菌体之间的DNA含量没有差异,但其他研究报告称菌体中的DNA含量增加。在1977年的细菌学(JB)纸杂志中,Paau等人。 (8)报告的流动微氟度测定数据明确表明Sinorhizobium Meliloti-Medicago-Medicago Sativa共生中的菌体具有比自由活细胞更高的DNA含量。对菌株的命运和性质的不同意见可能主要归因于具有挑战性的实验对象和特定的根瘤肉豆蔻相互作用之间的生物学差异。经过125多年的进一步研究,众所周知,根结节共生和菌体分化具有不同的口味。根据宿主细胞增殖的瞬态或持续性,分别确定或不确定结节类型,分别(9)。因此,不确定结节,由于持续的顶端单位而连续生长,沿结节显示细菌发育阶段的梯度。相比之下,细菌在确定结节中相当同步地发展。最终分化,放大或甚至支化的杆状体在不确定的结节中发现,而确定结节的菌体仍然很小并且能够恢复自由生长(10)。在两种类型的结节中,菌体显示基因表达和代谢活性的变化,而DNA含量的大变化主要在不确定结节(10)中的菌体分化期间。先进的电子显微镜分析促进了对早期感染步骤的显着了解,从感染螺纹的细菌释放细菌和菌体分化。从20世纪60年代到20世纪80年代,几个JB文件在这一领域作出了主要贡献(11-15)。这些研究揭示了整个菌体形态和类型的酶组体,其被定义为封闭在蠕动膜中的一种或多种菌体。根据宿主植物,观察含有单一菌细菌的SymbioSomes,例如,在M.苜蓿结节(11,14)中,例如,在甘氨酸Max和Vigna Sinensis结节(12,13)中。 Paau等人。 (15)对不确定的M.Sativa结节的不同发育区中的S. meliloti细胞超微结构进行了系统研究。从它们的细粒度分析中,作者得出结论,从衰老结节中释放的植物细菌细胞源自感染螺纹中的细菌储层。他们认为,尽管胁迫变性,衰老来自衰老结节的感染螺纹细菌会增加土壤中的细菌种群,支持真正的共生关系。发现抗菌结节的富含抗缺陷缺失的植物(IRLC)的富含抗菌性半胱氨酸(NCR)肽及其在施加不可逆转的末端分化到细菌中的作用最近在根末结节共生研究中开启了一个激动的新篇章(10, 16,17)。这一点至于在这种豆类植物落后(18)中的植物统治地位的进化趋势和植物的统治性,以及细菌储存器在能够在衰老中释放的感染螺纹中的感染螺纹的储存器的重要性。普遍推测这个水库

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号