...
首页> 外文期刊>The Journal of biological chemistry >Arrangement and Mobility of the Voltage Sensor Domain in Prokaryotic Voltage-gated Sodium Channels
【24h】

Arrangement and Mobility of the Voltage Sensor Domain in Prokaryotic Voltage-gated Sodium Channels

机译:电压传感器域在原核电压门控钠通道中的布置和移动性

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Prokaryotic voltage-gated sodium channels (NaVs) form homotetramers with each subunit contributing six transmembrane α-helices (S1–S6). Helices S5 and S6 form the ion-conducting pore, and helices S1-S4 function as the voltage sensor with helix S4 thought to be the essential element for voltage-dependent activation. Although the crystal structures have provided insight into voltage-gated K channels (KVs), revealing a characteristic domain arrangement in which the voltage sensor domain of one subunit is close to the pore domain of an adjacent subunit in the tetramer, the structural and functional information on NaVs remains limited. Here, we show that the domain arrangement in NaChBac, a firstly cloned prokaryotic NaV, is similar to that in KVs. Cysteine substitutions of three residues in helix S4, Q107C, T110C, and R113C, effectively induced intersubunit disulfide bond formation with a cysteine introduced in helix S5, M164C, of the adjacent subunit. In addition, substituting two acidic residues with lysine, E43K and D60K, shifted the activation of the channel to more positive membrane potentials and consistently shifted the preferentially formed disulfide bond from T110C/M164C to Q107C/M164C. Because Gln-107 is located closer to the extracellular side of helix S4 than Thr-110, this finding suggests that the functional shift in the voltage dependence of activation is related to a restriction of the position of helix S4 in the lipid bilayer. The domain arrangement and vertical mobility of helix S4 in NaChBac indicate that the structure and the mechanism of voltage-dependent activation in prokaryotic NaVs are similar to those in canonical KVs.
机译:原核电压门控钠通道(NAVS)形成同源菌特征,每个亚基有助于六个跨膜α-螺旋(S1-S6)。螺旋S5和S6形成离子导电孔,并且螺旋S1-S4用作具有螺旋S4的电压传感器认为是用于电压依赖性激活的基本要素。尽管晶体结构已经提供了进入电压门控通道(KVS)的洞察,但是揭示了一个特征域布置,其中一个子单元的电压传感器域靠近四聚体中相邻亚基的孔结构域,结构和功能信息在印度中仍然有限。在这里,我们表明,NACHBAC中的域排列是一个首先克隆的原核导游,类似于KVS。三种残基在螺旋S4,Q107C,T110C和R113C中的半胱氨酸取代,有效地用在相邻亚基的螺旋S5,M164C中引入的半胱氨酸诱导梭余二硫键形成。另外,用赖氨酸,E43K和D60K代替两种酸性残基,将通道的活化移位到更高的膜电位,并一致地将优先形成的二硫键与T110C / M164C至Q107C / M164C相移。因为GLN-107更靠近螺旋S4的细胞外侧而不是THR-110,所以该发现表明,激活的电压依赖性的功能变换与螺旋S4在脂质双层中的位置的限制有关。螺旋S4在Nachbac中的域布置和垂直移动性表明,原核导流中的电压依赖性激活的结构和机制与规范KVS中的结构类似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号