...
首页> 外文期刊>The Journal of biological chemistry >Nitric Oxide Inhibits Nociceptive Transmission by Differentially Regulating Glutamate and Glycine Release to Spinal Dorsal Horn Neurons
【24h】

Nitric Oxide Inhibits Nociceptive Transmission by Differentially Regulating Glutamate and Glycine Release to Spinal Dorsal Horn Neurons

机译:通过差异调节谷氨酸和甘氨酸释放到脊髓背角神经元来抑制一氧化氮抑制伤害速度

获取原文

摘要

Nitric oxide (NO) is involved in many physiological functions, but its role in pain signaling remains uncertain. Surprisingly, little is known about how endogenous NO affects excitatory and inhibitory synaptic transmission at the spinal level. Here we determined how NO affects excitatory and inhibitory synaptic inputs to dorsal horn neurons using whole-cell recordings in rat spinal cord slices. The NO precursor l-arginine or the NO donor SNAP significantly increased the frequency of glycinergic spontaneous and miniature inhibitory postsynaptic currents (IPSCs) of lamina II neurons. However, neither l-arginine nor SNAP had any effect on GABAergic IPSCs. l-arginine and SNAP significantly reduced the amplitude of monosynaptic excitatory postsynaptic currents (EPSCs) evoked from the dorsal root with an increase in paired-pulse ratio. Inhibition of the soluble guanylyl cyclase abolished the effect of l-arginine on glycinergic IPSCs but not on evoked monosynaptic EPSCs. Also, inhibition of protein kinase G blocked the increase in glycinergic sIPSCs by the cGMP analog 8-bromo-cGMP. The inhibitory effects of l-arginine on evoked EPSCs and high voltage-activated Ca2+ channels expressed in HEK293 cells and dorsal root ganglion neurons were abolished by blocking the S-nitrosylation reaction with N-ethylmaleimide. Intrathecal injection of l-arginine and SNAP significantly increased mechanical nociceptive thresholds. Our findings suggest that spinal endogenous NO enhances inhibitory glycinergic input to dorsal horn neurons through sGC-cGMP-protein kinase G. Furthermore, NO reduces glutamate release from primary afferent terminals through S-nitrosylation of voltage-activated Ca2+ channels. Both of these actions probably contribute to inhibition of nociceptive transmission by NO at the spinal level.
机译:一氧化氮(NO)涉及许多生理功能,但其在疼痛信号中的作用仍然不确定。令人惊讶的是,关于内源性NO如何影响兴奋性和抑制性突触传递的初步和抑制性突触传递很少。在这里,我们确定如何使用大鼠脊髓切片中的全部细胞记录对背角神经元的兴奋性和抑制性突触输入。 NO前体L-精氨酸或NO供体捕获显着提高了Lamina II神经元的甘氨酸能自发性和微型抑制突触突出电流(IPSC)的频率。然而,L-精氨酸和SNAP都没有对Gabaergic IPSC产生任何影响。 L-精氨酸和Snap显着降低了从背根部唤起的单腹兴奋性突触突触电流(EPSCs)的幅度随着配对脉冲比的增加而唤起。抑制可溶性的冠状阴性环酶废除L-精氨酸对甘氨酸能IPSC的影响,但不是诱发的单腹EPSCs。此外,蛋白激酶G的抑制阻断CGMP类似物8-溴-CGMP的甘氨酸能液体增加。通过阻断与N-乙基马来酰亚胺的S-亚硝基化反应阻止L-精氨酸对HEK293细胞和背根神经节神经元表达的诱发EPSC和高压活化CA2 +通道的抑制作用。鞘内注射L-精氨酸并捕获显着增加机械伤害阈值。我们的研究结果表明,脊柱内源性通过SGC-CGMP蛋白激酶G,脊柱内源性不会增强对背角神经元的抑制血糖能输入。此外,通过电压激活的Ca2 +通道的S-亚硝基化,从初级传入末端释放谷氨酸释放。这两项行动可能导致脊髓水平的抑制伤害效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号