...
首页> 外文期刊>The Journal of biological chemistry >Kinetic Analysis of Ribosome-bound Fluorescent Proteins Reveals an Early, Stable, Cotranslational Folding Intermediate
【24h】

Kinetic Analysis of Ribosome-bound Fluorescent Proteins Reveals an Early, Stable, Cotranslational Folding Intermediate

机译:核糖体结合的荧光蛋白的动力学分析显示出早期,稳定,分氯化物折叠中间体

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Protein folding in cells reflects a delicate interplay between biophysical properties of the nascent polypeptide, the vectorial nature and rate of translation, molecular crowding, and cellular biosynthetic machinery. To better understand how this complex environment affects de novo folding pathways as they occur in the cell, we expressed β-barrel fluorescent proteins derived from GFP and RFP in an in vitro system that allows direct analysis of cotranslational folding intermediates. Quantitative analysis of ribosome-bound eCFP and mCherry fusion proteins revealed that productive folding exhibits a sharp threshold as the length of polypeptide from the C terminus to the ribosome peptidyltransferase center is increased. Fluorescence spectroscopy, urea denaturation, and limited protease digestion confirmed that sequestration of only 10–15 C-terminal residues within the ribosome exit tunnel effectively prevents stable barrel formation, whereas folding occurs unimpeded when the C terminus is extended beyond the ribosome exit site. Nascent FPs with 10 of the 11 β-strands outside the ribosome exit tunnel acquire a non-native conformation that is remarkably stable in diverse environments. Upon ribosome release, these structural intermediates fold efficiently with kinetics that are unaffected by the cytosolic crowding or cellular chaperones. Our results indicate that during synthesis, fluorescent protein folding is initiated cotranslationally via rapid formation of a highly stable, on-pathway structural intermediate and that the rate-limiting step of folding involves autonomous incorporation of the 11th β-strand into the mature barrel structure.
机译:细胞中折叠蛋白质折叠反映了新生多肽的生物物理性质,矢量性质和翻译率,分子拥挤和细胞生物合成机械之间的微妙相互作用。为了更好地了解这种复杂的环境如何影响细胞中的DE Novo折叠途径,我们表达了衍生自GFP和RFP在体外系统中的β-桶荧光蛋白,允许直接分析分类折叠中间体。核糖体结合的ECFP和MCHERRY融合蛋白的定量分析显示,随着来自C末端的多肽的长度增加,生产性折叠表现出尖锐的阈值增加了核糖体肽基三烷基转移酶中心。荧光光谱,尿素变性和有限的蛋白酶消化证实,在核糖体出口隧道内仅为10-15个C末端残基的螯合有效地防止稳定的桶形形成,而当C末端延伸超过核糖体出口位点时,折叠出现折叠。在核糖体出口隧道之外的11μlβ-股中的10个鼻塞FPS获取非本地构象,在不同的环境中非常稳定。在核糖体释放后,这些结构中间体有效地折叠不受细胞溶质拥挤或细胞伴侣的动力学。我们的结果表明,在合成期间,通过快速形成高度稳定的,途径结构中间体和折叠的速率限制步骤,荧光蛋白折叠通过快速形成,涉及将第11β - 股线的自主掺入成熟筒结构中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号