...
首页> 外文期刊>RSC Advances >Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations
【24h】

Electron transport study on functionalized armchair graphene nanoribbons: DFT calculations

机译:电子传输研究官能化扶手椅石墨烯纳米队:DFT计算

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Quantum transport studies are performed on doped and functionalized 8- and 11-armchair graphene nanoribbons (aGNRs) by means of density functional theory. Substitutional doping is performed by introducing boron, nitrogen, oxygen, silicon, phosphorus, and sulfur atoms within the lattice of the aGNRs. Other functional groups such as borane, amine, hydroxyl, thiol, silane, silene, phosphine, and phosphorane groups are also introduced at the nanoribbon's edge. The dopant position and the nanoribbon's width strongly influence the current–voltage characteristics, and generally, the narrow 8-aGNRs and edge-doped 11-aGNRs show deteriorated transport properties, mainly due to the formation of irregular edges that create highly localized states disrupting several conducting bands. On the other hand, the inside-doped 11-aGNRs are barely affected, mainly because these systems preserve the edge's structure, thus edge conduction bands still contribute to the electron transport. Our results suggest that wider graphene nanoribbons could be functionalized at the inner sections without significantly compromising their transport characteristics while retaining the chemical reactivity that characterize doped nanocarbons. Such characteristics are highly desirable in fuel cells where doped graphene is used as a catalyst support or as a metal-free catalyst.
机译:通过密度函数理论对掺杂和官能化的8-和11扶手椅石墨烯纳米波巴(AGNRS)进行量子传输研究。通过在AgNR的晶格中引入硼,氮气,氧,硅,磷和硫原子来进行替代掺杂。在纳米臂的边缘也引入了其他官能团如硼烷,胺,羟基,硫醇,硅烷,溶剂,膦和磷烷组。掺杂剂位置和纳米·宽度强烈影响电流 - 电压特性,并且通常,窄的8-agnrs和边缘掺杂的11-agnrs显示出劣化的运输特性,主要是由于形成了不规则的边缘,从而产生高度局部的态度扰乱几个进行乐队。另一方面,内部掺杂的11-AGNR几乎没有受到影响,主要是因为这些系统保持边缘的结构,因此边缘传导槽仍然有助于电子传输。我们的研究结果表明,在内部部分可以在内部官能化的较宽石墨烯纳米,而不会显着损害其运输特性,同时保持掺杂纳米烃的化学反应性。这种特性在诸如掺杂石墨烯用作催化剂载体或无金属催化剂的燃料电池中是非常理想的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号