...
首页> 外文期刊>RSC Advances >Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure
【24h】

Colloidal nanocrystal superlattices as phononic crystals: plane wave expansion modeling of phonon band structure

机译:胶体纳米晶体超晶格作为声子晶体:旋光频带结构的平面波膨胀建模

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Colloidal nanocrystals consist of an inorganic crystalline core with organic ligands bound to the surface and naturally self-assemble into periodic arrays known as superlattices. This periodic structure makes superlattices promising for phononic crystal applications. To explore this potential, we use plane wave expansion methods to model the phonon band structure. We find that the nanoscale periodicity of these superlattices yield phononic band gaps with very high center frequencies on the order of 10 ~(2) GHz. We also find that the large acoustic contrast between the hard nanocrystal cores and the soft ligand matrix lead to very large phononic band gap widths on the order of 10 ~(1) GHz. We systematically vary nanocrystal core diameter, d , nanocrystal core elastic modulus, E _(NC core) , interparticle distance ( i.e. ligand length), L , and ligand elastic modulus, E _(ligand) , and report on the corresponding effects on the phonon band structure. Our modeling shows that the band gap center frequency increases as d and L are decreased, or as E _(NC core) and E _(ligand) are increased. The band gap width behaves non-monotonically with d , L , E _(NC core) , and E _(ligand) , and intercoupling of these variables can eliminate the band gap. Lastly, we observe multiple phononic band gaps in many superlattices and find a correlation between an increase in the number of band gaps and increases in d and E _(NC core) . We find that increases in the property mismatch between phononic crystal components ( i.e. d / L and E _(NC core) / E _(ligand) ) flattens the phonon branches and are a key driver in increasing the number of phononic band gaps. Our predicted phononic band gap center frequencies and widths far exceed those in current experimental demonstrations of 3-dimensional phononic crystals. This suggests that colloidal nanocrystal superlattices are promising candidates for use in high frequency phononic crystal applications.
机译:胶体纳米晶体由无机结晶芯组成,具有与表面结合的有机配体的无机结晶芯,并自然地自组装成周期阵列称为超晶格。这种周期性结构使超晶格对帖子晶体应用有前途。为了探索这种潜力,我们使用平面波扩展方法来模拟声子带结构。我们发现,这些超晶格的纳米级周期性会产生音源频带间隙,大约10〜(2)GHz的频率非常高。我们还发现硬纳米晶体芯和软配体基质之间的大声学对比度导致大约10〜(1)GHz的音声带隙宽度。我们系统压地改变纳米晶体芯直径,D,纳米晶体弹性模量,E _(NC核心),颗粒间距离(即配体长度),L和配体弹性模量,E _(配体),并报告对应的相应效果声子带结构。我们的建模表明,带隙中心频率随着D和L降低而增加,或者e_(nc核心)和e_(配体)增加。带隙宽度与D,L,E _(NC核心)和E _(配体)行为行为,并且这些变量的互通可以消除带隙。最后,我们观察到许多超晶格中的多个声位频段间隙,并在频带间隙的数量增加之间找到相关性,并且在d和e_(nc核心)中增加。我们发现,声子晶体组件(即,D / L和E _(NC核心)/ E _(Ligand)之间的财产不匹配增加,并且是增加声位频带间隙数量的关键驱动器。我们预测的张素带隙中心频率和宽度远远超过三维声子晶体的当前实验演示中的宽度。这表明胶体纳米晶体超晶格是用于高频声子晶体应用的承诺候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号