...
首页> 外文期刊>RSC Advances >Facile synthesis of ultrasmall stannic oxide nanoparticles as anode materials with superior cyclability and rate capability for lithium-ion batteries
【24h】

Facile synthesis of ultrasmall stannic oxide nanoparticles as anode materials with superior cyclability and rate capability for lithium-ion batteries

机译:容易合成超大使氧化物纳米颗粒作为具有优异的锂离子电池的阳极材料和锂离子电池的速率能力

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Ultrasmall monodisperse stannic oxide (SnO _(2) ) nanocrystals (diameter around 4 nm) with high-performance lithium storage are successfully synthesized via a simple calcination process, during which SiO _(2) mesoporous nanotubes (SiO _(2) -MNT) are used to play an important role in restraining the growth and aggregation of the nanocrystals. As a kind of anode material for lithium-ion batteries, the as-prepared SnO _(2) nanocrystals show an excellent electrical performance with a super high reversible capacity of 816 mA h g ~(?1) over 200 charge/discharge cycles at a current density of 160 mA g ~(?1) . Moreover, when the current density rises to 3200 mA g ~(?1) , the capacity is still as high as 550 mA h g ~(?1) , and it can be recovered to 816 mA h g ~(?1) simultaneously when the current density turns back to 80 mA g ~(?1) . These results suggest that the obtained SnO _(2) nanocrystals can achieve a completely reversible transformation from Li _(4.4) Sn to SnO during discharging ( i.e. , Li is extracted by dealloying and a reversible conversion reaction, generating 6.4 electrons). The superior electrochemical performance can be ascribed to the ultrafine particle size of SnO _(2) , which promotes the reactive activity and alleviates the volume change of the anode composite during charge/discharge cycling.
机译:通过简单的煅烧过程成功地合成超高效锂储存的超大锂氧化物(直径约为4nm),在此期间SiO_(2)中孔纳米管(SiO_(2)-mnt )用于在约束纳米晶体的生长和聚集方面发挥重要作用。作为锂离子电池的一种阳极材料,所制备的SnO _(2)纳米晶体显示出优异的电气性能,具有816mA Hg〜(α1)的超高可逆容量,在a上200倍电荷/放电循环电流密度为160 mA g〜(?1)。此外,当电流密度上升到3200 mA g〜(α1)时,容量仍然高达550 mA hg〜(α1),并且可以同时恢复到816mA hg〜(Δ1)时电流密度恢复到80 mA g〜(?1)。这些结果表明,所获得的SnO _(2)纳米晶体可以在排出期间从Li _(4.4)Sn到SnO的完全可逆变换(即,通过造成的易于制剂和可逆转化反应提取Li,产生6.4电子。卓越的电化学性能可以归因于SnO _(2)的超细粒径,这促进了反应活性,并减轻了在充电/放电循环期间阳极复合物的体积变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号