首页> 外文期刊>RSC Advances >Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived?from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries
【24h】

Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived?from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries

机译:富富分层Li1.2Mn0.54Ni0.13Co0.13O2衍生出α从具有微纳米结构的过渡金属碳酸盐作为高性能锂离子电池的阴极材料

获取原文
获取外文期刊封面目录资料

摘要

Compared to commercialized cathode materials, Li-rich layered oxide exhibits a superior mass energy density. However, owing to its low tap/press density, the advantage of its volume energy density is not as obvious as that of its mass energy density, which limits its applications in some volume-constrained fields. It has been shown that the morphology of the precursor is critical to the performances of the final product. Here, solvothermal and co-precipitation methods were adopted to synthesize transition metal carbonate balls with micro-size particles to obtain high-density Li-rich layered oxides. The solvothermal synthesized carbonate showed a micro–nano hierarchical structure composed of nanoplates as subunits, and the co-precipitated synthesized carbonate just presents a micrometer quasi-ball morphology. The Li _(1.2) Mn _(0.54) Ni _(0.13) Co _(0.13) O _(2) derived from the above solvothermal synthesized carbonate (ST-LMNCO) demonstrated an improved volume density of ~14% compared to the one derived from the co-precipitated synthesized carbonate (CP-LMNCO). As for electrochemical performances, the ST-LMNCO exhibited a higher discharge specific capacitance (296.6 mA h g ~(?1) for the first discharge), a better rate performance (201.6 mA h g ~(?1) at 1C rate) and a better capacity retention capability (86.2% after 80 cycles) than the CP-LMNCO. The morphologies of the transition metal carbonates as starting materials significantly impacted the morphologies of the derived Li _(1.2) Mn _(0.54) Ni _(0.13) Co _(0.13) O _(2) particles. Therefore, the carbonate with a hierarchical micro–nanostructure obtained from the solvothermal method is a promising precursor for high performance Li _(1.2) Mn _(0.54) Ni _(0.13) Co _(0.13) O _(2) .
机译:与商业化的阴极材料相比,富含量的层状氧化物表现出优异的质量能密度。然而,由于其低龙头/压紧密度,其体积能密度的优点与其质量密度的优势不显而易见,这限制了其在一些体积受限的场中的应用。已经表明,前体的形态对最终产品的性能至关重要。这里,采用溶剂热和共析出方法合成具有微尺寸颗粒的过渡金属碳酸盐球,得到高密度锂的层状氧化物。溶剂热合成的碳酸酯显示出由纳米板作为亚基组成的微纳米分层结构,并且共沉淀的合成碳酸酯只是呈现千分尺的准球形形态。衍生自上述溶剂热合成碳酸酯(ST-LMNCO)的Li _(1.2)Mn _(0.54)Ni _(0.13)Co _(0.13)o _(2)证明了与〜14%的提高体积密度〜14%一种衍生自共沉淀的合成碳酸酯(CP-LMNCO)。对于电化学性能,ST-LMNCO表现出更高的放电特异性电容(第一次放电296.6 mA Hg〜(Δ1)),更好的速率性能(201.6 mA Hg〜(α1),速率更好)和更好容量保持能力(80次循环后86.2%)比CP-LMNCO。作为原料的过渡金属碳酸盐的形态显着影响了衍生的Li _(1.2)Mn _(0.54)Ni _(0.13)Co _(0.13)O _(2)颗粒的形态。因此,从溶剂热法得到的具有分层微纳米结构的碳酸盐是高性能Li _(1.2)Mn _(0.54)Ni _(0.13)Co _(0.13)O _(2)的有前体前体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号