...
首页> 外文期刊>E3S Web of Conferences >Uncertainty and sensitivity analysis applied to a rammed earth wall: evaluation of the discrepancies between experimental and numerical data
【24h】

Uncertainty and sensitivity analysis applied to a rammed earth wall: evaluation of the discrepancies between experimental and numerical data

机译:应用于夯土墙的不确定性和敏感性分析:评估实验和数值数据之间的差异

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Due to the environmental impact of building materials, researches on sustainable materials, such as bio-based and earth materials, are now widespread. These materials offer numerous qualities such as their availability, recyclability and their ability to dampen the indoor relative humidity variations due to their hygroscopicity. As these materials can absorb large amount of humidity, numerical and experimental studies of their hygrothermal behaviour are crucial to assess their durability.To validate a hygrothermal model, numerical and experimental data have to be confronted. Such confrontation must take into consideration the uncertainties related to the experimental protocol, but also to the model. Statistical tools such as uncertainty and global sensitivity analysis are essential for this task. The uncertainty analysis estimates the robustness of the model, while the global sensitivity analysis identifies the most influential input(s) responsible for this robustness. However, these methods are not commonly used because of the complexity of hygrothermal models, and therefore the prohibitive simulation cost.This study presents a methodology for comparing the numerical and experimental data of a rammed earth wall subjected to varying temperature and relative humidity conditions. The main objectives are the investigation of the uncertainties impact, the estimation of the model robustness, and finally the identification of the input(s) responsible for the discrepancies between numerical and experimental data. To do so, a recent and low-cost global variance-based sensitivity method, named RBD-FAST, is applied. First, the uncertainty propagation through the model is calculated, then the sensitivity indices are estimated. They represent the part of the output variability related to each input variability. The output of interest is the vapour pressure in the middle of the wall to confront it to the experimental measurement. Good agreement is obtained between the experimental and numerical results. It is also highlighted that the sorption isotherm is the main factor influencing the vapour pressure in the material.
机译:由于建筑材料的环境影响,对可持续材料的研究,如生物和地球材料,现在普遍存在。这些材料提供了许多质量,例如由于其吸湿性而抑制室内相对湿度变化的可用性,可回收性及其能力。由于这些材料可以吸收大量湿度,对其湿热行为的数值和实验研究对于评估其耐用性至关重要。验证湿热模型,必须面对数值和实验数据。这种对抗必须考虑到与实验方案相关的不确定性,而且还要考虑到该模型的不确定性。统计工具如不确定性和全局敏感性分析对于这项任务至关重要。不确定性分析估计模型的稳健性,而全局敏感性分析识别负责这种稳健性的最有影响力的投入。然而,由于湿热模型的复杂性,因此,这些方法并不常用,因此越来越多的模拟成本。本研究提出了一种用于比较经受不同温度和相对湿度条件的夯土壁的数值和实验数据的方法。主要目标是调查不确定性的影响,估计模型的鲁棒性,最后识别负责数值和实验数据之间的差异的差异。为此,应用了最近和低成本的全局差异基础的敏感性方法,名为RBD-Fast。首先,计算通过模型的不确定性传播,然后估计灵敏度指数。它们代表了与每个输入可变性相关的输出可变性的一部分。感兴趣的产出是墙体中间的蒸气压,以将其面对实验测量。在实验和数值结果之间获得了良好的一致性。还强调了吸附等温线是影响材料中蒸气压的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号