首页> 外文期刊>Astronomy and astrophysics >Dust in brown dwarfs and extra-solar planets
【24h】

Dust in brown dwarfs and extra-solar planets

机译:棕色矮人和太阳能行星的灰尘

获取原文
获取外文期刊封面目录资料

摘要

The precipitation of cloud particles in brown dwarf and exoplanet atmospheres establishes an ongoing downward flux of condensable elements. To understand the efficiency of cloud formation, it is therefore crucial to identify and quantify the replenishment mechanism that is able to compensate for these local losses of condensable elements in the upper atmosphere, and to keep the extrasolar weather cycle running. In this paper, we introduce a new cloud formation model by combining the cloud particle moment method we described previously with a diffusive mixing approach, taking into account turbulent mixing and gas-kinetic diffusion for both gas and cloud particles. The equations are of diffusion-reaction type and are solved time-dependently for a prescribed 1D atmospheric structure, until the model has relaxed toward a time-independent solution. In comparison to our previous models, the new hot-Jupiter model results ( T _(eff)≈ 2000 K, log g = 3) show fewer but larger cloud particles that are more concentrated towards the cloud base. The abundances of condensable elements in the gas phase are featured by a steep decline above the cloud base, followed by a shallower, monotonous decrease towards a plateau, the level of which depends on temperature. The chemical composition of the cloud particles also differs significantly from our previous models. Through the condensation of specific condensates such as Mg_(2)SiO_(4)[s] in deeper layers, certain elements, such as Mg, are almost entirely removed early from the gas phase. This leads to unusual (and non-solar) element ratios in higher atmospheric layers, which then favours the formation of SiO[s] and SiO_(2)[s], for example, rather than MgSiO_(3)[s]. These condensates are not expected in phase-equilibrium models that start from solar abundances. Above the main silicate cloud layer, which is enriched with iron and metal oxides, we find a second cloud layer made of Na_(2)S[s] particles in cooler models ( T _(eff)? 1400 K).
机译:棕色矮小和外延型气氛中云颗粒的沉淀建立了可透明元素的持续向下通量。要了解云形成的效率,因此识别和量化能够弥补上层大气中可粘附元素的这些局部损失的补充机制至关重要,并保持额外的天气循环运行。在本文中,我们通过将先前用扩散混合方法描述的云粒子时刻方法来引入新的云形成模型,考虑到气体和云颗粒的湍流混合和气体动力学扩散。等式的是扩散反应类型,并对规定的1D大气结构进行时间依赖地解决,直到模型朝向时间无关的解决方案。与我们之前的模型相比,新的热Jupitor模型结果(t _(eff)≈2000k,log g = 3)显示更少但更大的云粒子更加集中朝向云基础。气相中可冷凝元素的丰富元素由云碱上方的陡峭下降,然后朝向高原的单调减少,其水平取决于温度。云颗粒的化学成分也与我们之前的模型显着不同。通过更深层中的特定缩合物如Mg_(2)SiO_(4)的特定缩合物,从气相早期几乎完全除去某些元素,例如Mg。这导致较高大气层中的不寻常(和非太阳能)元件比,然后在例如SiO [S]和SiO_(2)的形成中,例如,而不是Mgsio_(3)。这些冷凝物在从太阳丰度开始的相平衡模型中没有预期。在富含铁和金属氧化物的主要硅酸盐云层上方,我们发现由Na_(2)S [S]颗粒制成的第二云层(T _(EFF)α1400k)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号