...
首页> 外文期刊>Astronomy and astrophysics >15N fractionation in infrared-dark cloud cores
【24h】

15N fractionation in infrared-dark cloud cores

机译:在红外线云核中的15N分级

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Context. Nitrogen is one of the most abundant elements in the Universe and its ~(14) N/ ~(15) N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims. We seek to determine the ~(14)N / ~(15)N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods. We observed the J = 1 → 0 transitions of HCN, H ~(13) CN, HC ~(15) N, HN ~(13) C, and H ~(15) NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H ~(13) CN, HC ~(15) N, HN ~(13) C, and H ~(15) NC are calculated and their ~(14)N / ~(15)N ratio is determined for each core. Results. The ~(14)N / ~(15)N ratios measured in our sample of IRDC cores range between ~ 70 and ≥ 763 in HCN and between ~ 161 and ~ 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the ~(14)N / ~(15)N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions. Relatively low ~(14)N / ~(15)N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN.
机译:语境。氮是宇宙中最丰富的元素之一,其〜(14)n /〜(15)n同位素比率有可能提供有关我们太阳形成的初始环境的信息。最近的发现表明,由于陨石中的短寿命放射性同位素的存在,因此只能通过超新月的影响来解释,因此可以在大规模簇中形成太阳系。目标。我们寻求在其演进中的初始阶段确定〜(14)n /〜(15)n比的比例。方法。我们观察到HCN,H〜(13)CN,HC〜(15)N,HN〜(13)C和H〜(15)NC的J = 1→0转变为四个红外线的22个核的样本被认为是高质量恒星和星簇的前体的乌云(IRDC)。假设LTE和15 k的温度,计算HCN,H〜(13)CN,HC〜(15)N,HN〜(13)C和H〜(15)NC的柱密度及其〜(14 )N /〜(15)n比为每个核心确定。结果。在HCN中的IRDC芯样品中测量的〜(14)氮含量测量,HCN中的〜70和≥763的〜161和〜541之间。这些比率与陆地气氛(Ta)和原子溶质星云(PSN)值一致,并且在低质量普拉斯核中测量的比率。然而,在核心C1,C3,F1,F2和G2中测量的〜(14)n /〜(15)n比不同意使用具有腈官能团的氮轴承分子与相同核的类似研究的结果( -CN)和氮氢(-NH),尽管比例蔓延覆盖相似的范围。结论。在IRDC G中测量四种IRDC中的相对低〜(14)N /〜(15)n比率,其与小型化学材料和原生形甲型盘中测量的IRDC G相当。该云的低平均气体密度表明,气体密度而不是气体温度,可能是影响年轻PSN中初始氮同位素组合物的主要参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号