首页> 外文期刊>JMLR: Workshop and Conference Proceedings >Attentive Adversarial Network for Large-Scale Sleep Staging
【24h】

Attentive Adversarial Network for Large-Scale Sleep Staging

机译:大规模睡眠分期的细心对抗网络

获取原文
           

摘要

Current approaches to developing a generalized automated sleep staging method rely on constructing a large labeled training and test corpora by leveraging electroencephalograms (EEGs) from different individuals. However, data in the training set may exhibit changes in the EEG pattern that are very different from the data in the test set due to inherent inter-subject variability, heterogeneity of acquisition hardware, different montage choices and different recording environments. Training an algorithm on such data without accounting for this diversity can lead to underperformance. In order to solve this issue, different methods are investigated for learning an invariant representation across all individuals in datasets. However, all parts of the corpora are not equally transferable. Therefore, forcefully aligning the nontransferable data may lead to a negative impact on the overall performance. Inspired by how clinicians manually label sleep stages, this paper proposes a method based on adversarial training along with attention mechanisms to extract transferable information across individuals from different datasets and pay attention to more important or relevant channels and transferable parts of data, simultaneously. Using two large public EEG databases - 994 patient EEGs (6,561 hours of data) from the Physionet 2018 Challenge (P18C) database and 5,793 patients (42,560 hours) EEGs from Sleep Heart Health Study (SHHS) - we demonstrate that adversarially learning a network with attention mechanism, significantly boosts performance compared to state-of-the-art deep learning approaches in the cross-dataset scenario. By considering the SHHS as the training set, the proposed method improves, on average, precision from 0.72 to 0.84, sensitivity from 0.74 to 0.85, and Cohen’s Kappa coefficient from 0.64 to 0.80 for the P18C database.
机译:开发广义自动睡眠分期方法的电流方法依赖于通过利用不同个体的脑电图(脑电图)构建大型标记训练和测试语料库。然而,训练集中的数据可能表现出与测试集中的数据的EEG模式的变化,由于固有的对象间可变性,采集硬件,不同蒙太奇选择和不同的记录环境的异质性。在未核算这种多样性的情况下培训算法可能导致表现不佳。为了解决这个问题,调查了不同的方法,以在数据集中的所有个人中学习不变的表示。但是,Corpora的所有部分都不同样可转让。因此,强制对准非转换数据可能导致对整体性能的负面影响。这篇论文提出了一种基于对抗性培训的方法,以及引起不同数据集中的各个人的关注机制,并同时关注更重要或相关的渠道和可转让的数据,并同时关注更重要或相关的渠道和可转让的数据的方法。使用两个大型公共EEG数据库 - 来自PhysioIoneT 2018挑战(P18C)数据库的994名患者EEG(数据)和5,793名患者(42,560小时)来自睡眠心脏健康研究的脑电图(SHHS) - 我们展示了对抗的对抗与交叉数据集场景中的最先进的深度学习方法相比,注意机制,显着提高了性能。通过将SHHS视为培训集,所提出的方法平均改善0.72至0.84,灵敏度为0.74至0.85,以及P18C数据库的0.64至0.80的Cohen的Kappa系数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号