...
首页> 外文期刊>Hydrology and Earth System Sciences >Comparison of root water uptake models in simulating COsub2/sub and Hsub2/subO fluxes and growth of wheat
【24h】

Comparison of root water uptake models in simulating COsub2/sub and Hsub2/subO fluxes and growth of wheat

机译:仿真CO 2 和H 2 O助熔剂和生长的根水摄取模型的比较

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Stomatal regulation and whole plant hydraulic signaling affect water fluxes and stress in plants. Land surface models and crop models use a coupled photosynthesis–stomatal conductance modeling approach. Those models estimate the effect of soil water stress on stomatal conductance directly from soil water content or soil hydraulic potential without explicit representation of hydraulic signals between the soil and stomata. In order to explicitly represent stomatal regulation by soil water status as a function of the hydraulic signal and its relation to the whole plant hydraulic conductance, we coupled the crop model LINTULCC2 and the root growth model SLIMROOT with Couvreur's root water uptake model?(RWU) and the HILLFLOW soil water balance model. Since plant hydraulic conductance depends on the plant development, this model coupling represents a two-way coupling between growth and plant hydraulics. To evaluate the advantage of considering plant hydraulic conductance and hydraulic signaling, we compared the performance of this newly coupled model with another commonly used approach that relates root water uptake and plant stress directly to the root zone water hydraulic potential (HILLFLOW with Feddes' RWU model). Simulations were compared with gas flux measurements and crop growth data from a wheat crop grown under three water supply regimes (sheltered, rainfed, and irrigated) and two soil types (stony and silty) in western Germany in?2016. The two models showed a relatively similar performance in the simulation of dry matter, leaf area index (LAI), root growth, RWU, gross assimilation rate, and soil water content. The Feddes model predicts more stress and less growth in the silty soil than in the stony soil, which is opposite to the observed growth. The Couvreur model better represents the difference in growth between the two soils and the different treatments. The newly coupled model (HILLFLOW–Couvreur's RWU–SLIMROOT–LINTULCC2) was also able to simulate the dynamics and magnitude of whole plant hydraulic conductance over the growing season. This demonstrates the importance of two-way feedbacks between growth and root water uptake for predicting the crop response to different soil water conditions in different soils. Our results suggest that a better representation of the effects of soil characteristics on root growth is needed for reliable estimations of root hydraulic conductance and gas fluxes, particularly in heterogeneous fields. The newly coupled soil–plant model marks a promising approach but requires further testing for other scenarios regarding crops, soil, and climate.
机译:气孔调节和整个植物液压信号影响植物中的水助熔剂和胁迫。陆地表面模型和作物模型使用耦合光合作用 - 气孔电导建模方法。这些模型估计了土壤水分胁迫直接从土壤含水量或土壤液压潜力的影响,无明确表示土壤和气孔之间的液压信号。为了明确表示土壤水位的气孔调节作为液压信号的函数及其与整个植物液压传导的关系,我们偶联了作物模型Lintulcc2和Couvreur的根水摄取模型的生长模型Slimroot?(RWU)和山流土壤水平模型。由于植物液压传导取决于植物开发,这种模型耦合代表了生长和植物液压之间的双向耦合。为了评估考虑厂液压导电和液压信号的优势,我们将这种新耦合模型与另一种常用方法的性能进行了比较,该常用方法将根水吸收和植物压力直接与根区水液压(Hillflow与Feddes'rwu模型相关)。将模拟与来自三个供水制度(庇护,雨量和灌溉)和西德国西部的两种土壤类型(石和粉质)的小麦作物中的煤气助量测量和作物生长数据进行了比较。2016年。两种模型在干物质,叶面积指数(LAI),根生长,RWU,总同化率和土壤含水量的模拟中表现出相对较为相似的性能。 FEDDES模型预测粉质土壤的压力和较低的增长,而不是在石块中,与观察到的生长相反。 Couvreur模型更好地代表了两种土壤和不同治疗之间的增长差异。新耦合的型号(Hillflow-Couvreur的Rwu-Slimroot-Lintulcc2)还能够模拟生长季节的全植物液压电导的动态和程度。这证明了双向反馈在生长和根水摄取之间的重要性,以预测不同土壤中不同土壤水条件的作物应对。我们的结果表明,需要更好地表示土壤特征对根系液压传导和气体助熔剂的可靠估计,特别是在异构领域。新耦合的土壤植物模型标志着有希望的方法,但需要进一步测试关于作物,土壤和气候的其他情景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号