...
首页> 外文期刊>Hydrology and Earth System Sciences >Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed
【24h】

Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed

机译:基于大规模过程的水文模型应用于亚马逊流域的分层敏感性分析

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Sensitivity analysis methods have recently received much attention for identifying important uncertainty sources (or uncertain inputs) and improving model calibrations and predictions for hydrological models. However, it is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models (PBHMs) because of its variant uncertainty sources and high computational cost. Therefore, a global sensitivity analysis method that is capable of simultaneously analyzing multiple uncertainty sources of PBHMs and providing quantitative sensitivity analysis results is still lacking. In an effort to develop a new tool for overcoming these weaknesses, we improved the hierarchical sensitivity analysis method by defining a new set of sensitivity indices for subdivided parameters. A new binning method and Latin hypercube sampling (LHS) were implemented for estimating these new sensitivity indices. For test and demonstration purposes, this improved global sensitivity analysis method was implemented to quantify three different uncertainty sources (parameters, models, and climate scenarios) of a three-dimensional large-scale process-based hydrologic model (Process-based Adaptive Watershed Simulator, PAWS) with an application case in an ~ 9000 km2 Amazon catchment. The importance of different uncertainty sources was quantified by sensitivity indices for two hydrologic outputs of interest: evapotranspiration (ET) and groundwater contribution to streamflow (QG). The results show that the parameters, especially the vadose zone parameters, are the most important uncertainty contributors for both outputs. In addition, the influence of climate scenarios on ET predictions is also important. Furthermore, the thickness of the aquifers is important for QG predictions, especially in main stream areas. These sensitivity analysis results provide useful information for modelers, and our method is mathematically rigorous and can be applied to other large-scale hydrological models.
机译:敏感性分析方法最近接受了识别重要的不确定性来源(或不确定的输入)和改善水文模型的模型校准和预测的许多关注。然而,由于其变体的不确定性来源和高计算成本,将定量和全面的全局敏感性分析方法应用于复杂的大规模过程的水文模型(PBHMS)仍然具有挑战性。因此,仍然缺乏能够同时分析多种不确定性源和提供定量敏感性分析结果的全局敏感性分析方法。为了开发一种克服这些弱点的新工具,我们通过为细分参数定义新的灵敏度指数来改进分层灵敏度分析方法。实施了新的分发方法和拉丁超立体采样(LHS),用于估算这些新的敏感性指数。对于测试和演示目的,实现了这种改进的全局敏感性分析方法,以量化三维大规模基于过程的水文模型的三种不同的不确定性来源(参数,模型和气候情景)(基于过程的自适应流域模拟器,爪子)在〜9000 km2亚马逊集水区中的应用案例。通过对兴趣的两个水文产出的敏感性指数来量化不同不确定性来源的重要性:蒸散散热(ET)和流出流出(QG)的地下水贡献。结果表明,参数,尤其是Vadose区参数,是两个输出的最重要的不确定性贡献者。此外,气候情景对ET预测的影响也很重要。此外,含水层的厚度对于QG预测是重要的,特别是在主要流区域中。这些敏感性分析结果为建模者提供了有用的信息,我们的方法是在数学上严格的,可以应用于其他大规模水文模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号