首页> 外文期刊>Hydrology and Earth System Sciences >Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality
【24h】

Required sampling density of ground-based soil moisture and brightness temperature observations for calibration and validation of L-band satellite observations based on a virtual reality

机译:基于地面土壤水分和亮度温度观测所需的采样密度,基于虚拟现实校准和验证L频段卫星观测的校准和验证

获取原文
           

摘要

Microwave remote sensing is the most promising tool for monitoring near-surface soil moisture distributions globally. With the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) missions in orbit, considerable efforts are being made to evaluate derived soil moisture products via ground observations, microwave transfer simulation, and independent remote sensing retrievals. Due to the large footprint of the satellite radiometers of about 40 km in diameter and the spatial heterogeneity of soil moisture, minimum sampling densities for soil moisture are required to challenge the targeted precision. Here we use 400 m resolution simulations with the regional Terrestrial System Modeling Platform (TerrSysMP) and its coupling with the Community Microwave Emission Modelling platform (CMEM) to quantify the maximum sampling distance allowed for soil moisture and brightness temperature validation. Our analysis suggests that an overall sampling distance of finer than 6 km is required to validate the targeted accuracy of 0.04 cm3 cm?3 with a 70 % confidence level in SMOS and SMAP estimates over typical mid-latitude European regions. The maximum allowed sampling distance depends on the land-surface heterogeneity and the meteorological situation, which influences the soil moisture patterns, and ranges from about 6 to 17 km for a 70 % confidence level for a typical year. At the maximum allowed sampling distance on a 70 % confidence level, the accuracy of footprint-averaged soil moisture is equal to or better than brightness temperature estimates over the same area. Estimates strongly deteriorate with larger sampling distances. For the evaluation of the smaller footprints of the active and active–passive products of SMAP the required sampling densities increase; e.g., when a grid resolution of 3 km diameter is sampled by three sites of footprints of 9 km sampled by five sites required, only 50 %–60 % of the pixels have a sampling error below the nominal values. The required minimum sampling densities for ground-based radiometer networks to estimate footprint-averaged brightness temperature are higher than for soil moisture due to the non-linearities of radiative transfer, and only weakly correlated in space and time. This study provides a basis for a better understanding of the sometimes strong mismatches between derived satellite soil moisture products and ground-based measurements.
机译:微波遥感是全球监控近地面土壤水分分布的最有前途的工具。通过土壤水分和海洋盐水(SMOS)和土壤水分活性被动(SMAP)任务在轨道上,正在通过地面观测,微波传输模拟和独立遥感检索来评估衍生土壤水分产品的大量努力。由于卫星辐射尺寸的直径约40千米的占地面积和土壤水分的空间异质性,需要对土壤水分的最小采样密度攻击目标精度。在这里,我们使用400米的分辨率模拟与区域地面系统建模平台(Tersysmp)及其与社区微波发射建模平台(CMEM)的耦合来量化土壤湿度和亮度温度验证的最大抽样距离。我们的分析表明,需要比6公里更精细的整体采样距离,以验证0.04 cm3厘米的目标精度为0.04 cm3 cm的验证,SMOS中的70%的置信水平和典型的中际欧洲地区的SMOAP估计。最大允许的抽样距离取决于土地表面异质性和气象形势,影响土壤水分模式,范围为约6至17公里,为典型的年份为70%的置信水平。在70%置信水平上的最大允许采样距离,占地面积的精度等于或优于同一区域的亮度温度估计。估计较大的采样距离强烈恶化。为了评估液体的活性和主动产品的较小占地面积,所需的采样密度增加;例如,当3 km直径的网格分辨率被3个占地面积的三个位点采样,所需的五个网站,只有50%-60%的像素具有下方标称值下方的采样误差。由于辐射转移的非线性,基于地基辐射计网络的所需最小采样密度估计足迹平均亮度温度高于土壤水分,并且在空间和时间内略微相关。本研究提供了更好地理解衍生卫星土壤水分产品和基于地面测量之间有时强烈不匹配的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号