首页> 外文期刊>PLoS Genetics >The Amidation Step of Diphthamide Biosynthesis in Yeast Requires DPH6, a Gene Identified through Mining the DPH1- DPH5 Interaction Network
【24h】

The Amidation Step of Diphthamide Biosynthesis in Yeast Requires DPH6, a Gene Identified through Mining the DPH1- DPH5 Interaction Network

机译:酵母中双嘧胺生物合成的胺化步骤需要<斜体> DPH6 ,通过开采<斜体> DPH1 - <斜体> DPH5 交互网络

获取原文
           

摘要

Diphthamide is a highly modified histidine residue in eukaryal translation elongation factor 2 (eEF2) that is the target for irreversible ADP ribosylation by diphtheria toxin (DT). In Saccharomyces cerevisiae , the initial steps of diphthamide biosynthesis are well characterized and require the DPH1-DPH5 genes. However, the last pathway step—amidation of the intermediate diphthine to diphthamide—is ill-defined. Here we mine the genetic interaction landscapes of DPH1-DPH5 to identify a candidate gene for the elusive amidase ( YLR143w / DPH6 ) and confirm involvement of a second gene ( YBR246w / DPH7 ) in the amidation step. Like dph1-dph5 , dph6 and dph7 mutants maintain eEF2 forms that evade inhibition by DT and sordarin, a diphthamide-dependent antifungal. Moreover, mass spectrometry shows that dph6 and dph7 mutants specifically accumulate diphthine-modified eEF2, demonstrating failure to complete the final amidation step. Consistent with an expected requirement for ATP in diphthine amidation, Dph6 contains an essential adenine nucleotide hydrolase domain and binds to eEF2. Dph6 is therefore a candidate for the elusive amidase, while Dph7 apparently couples diphthine synthase (Dph5) to diphthine amidation. The latter conclusion is based on our observation that dph7 mutants show drastically upregulated interaction between Dph5 and eEF2, indicating that their association is kept in check by Dph7. Physiologically, completion of diphthamide synthesis is required for optimal translational accuracy and cell growth, as indicated by shared traits among the dph mutants including increased ribosomal ?1 frameshifting and altered responses to translation inhibitors. Through identification of Dph6 and Dph7 as components required for the amidation step of the diphthamide pathway, our work paves the way for a detailed mechanistic understanding of diphthamide formation. Author Summary Diphthamide is an unusual modified amino acid found uniquely in a single protein, eEF2, which is required for cells to synthesize new proteins. The name refers to its target function for eEF2 inactivation by diphtheria toxin, the disease-inducing agent produced by the pathogen Corynebacterium diphtheriae . Why cells require eEF2 to contain diphthamide is unclear, although mice unable to make it fail to complete embryogenesis. Cells generate diphthamide by modifying a specific histidine residue in eEF2 using a three-step biosynthetic pathway, the first two steps of which are well defined. However, the enzyme(s) involved in the final amidation step are unknown. Here we integrate genomic and molecular approaches to identify a candidate for the elusive amidase (Dph6) and confirm involvement of a second protein (Dph7) in the amidation step, showing that failure to synthesize diphthamide affects the accuracy of protein synthesis. In contrast to Dph6, however, Dph7 may be regulatory. Our data strongly suggest that it promotes dissociation of eEF2 from diphthine synthase (Dph5), which carries out the second step of diphthamide synthesis, and that Dph5 has a novel role as an eEF2 inhibitor when diphthamide synthesis is incomplete.
机译:二硫酰胺是一种高度修饰的组氨酸残基,其在真核翻译延伸因子2(EEF2)中,是白喉毒素(DT)的不可逆ADP核糖化的靶标。在酿酒酵母中,二甘嘧啶生物合成的初始步骤具有很好的表征并需要DPH1-DPH5基因。然而,中间双氨基对二华胺的最后一条途径逐步定义。在这里,我们挖掘DPH1-DPH5的遗传相互作用景观,以鉴定难以置心的酰胺酶(YLR143W / DPH6)的候选基因,并确认在酰胺化步骤中的第二基因(YBR246W / DPH7)的涉及。与DPH1-DPH5一样,DPH6和DPH7突变体维持EEF2形式,避免DT和Sordarin,依赖于二谷物依赖性抗真菌。此外,质谱表明,DPH6和DPH7突变体特异性积累双藻改性的EEF2,证明未完成最终的酰胺化步骤。与双氨基酰胺中的ATP预期要求一致,DPH6含有必需的腺嘌呤核苷酸水解酶,与EEF2结合。因此,DPH6是难以置心的酰胺酶的候选者,而DPH7显然将二度合酶(DPH5)致其双氨基酰胺。后一种结论是基于我们观察到DPH7突变体在DPH5和EEF2之间显示出大幅上调的相互作用,表明它们的关联被DPH7保持检查。在生理学上,如在DPH突变体中的共同性状所示,包括增加的核糖体α1越来越多的分类和改变对翻译抑制剂的反应所示,需要完成二核苷酸合成的完成,以获得最佳的平移精度和细胞生长。通过鉴定DPH6和DPH7作为杀胺途径的胺化步骤所需的组分,我们的作品为对二华胺形成的详细机械理解铺平了道路。作者摘要二佐酰胺是一种不寻常的改性氨基酸,在单一蛋白质中唯一地发现,EEF2是细胞合成新蛋白质所必需的。该名称是指二色毒素毒素的EEF2失活的目标功能,由病原体棒状杆菌生物细菌酸钠产生的疾病诱导剂。为什么细胞需要EEF2含有二佐酰胺尚不清楚,虽然小鼠无法使其无法完成胚胎发生。通过三步生物合成途径通过修饰EEF2中的特定组氨酸残基,细胞产生二硫酰胺,其前两个步骤明确。然而,参与最终酰胺化步骤的酶是未知的。在这里,我们整合基因组和分子方法以鉴定难以置心的酰胺酶(DPH6)的候选物,并确认第二蛋白(DPH7)在酰胺化步骤中的涉及,表明合成二高酰胺的未造成蛋白质合成的准确性。然而,与DPH6相比,DPH7可能是规范的。我们的数据强烈表明,它促进了从二高合酶(DPH5)中的EEF2的解离,其执行二硫酰胺合成的第二步,当二硫酰胺合成不完全时,DPH5具有作为EEF2抑制剂的新作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号