...
首页> 外文期刊>PLoS Computational Biology >Learning Multisensory Integration and Coordinate Transformation via Density Estimation
【24h】

Learning Multisensory Integration and Coordinate Transformation via Density Estimation

机译:通过密度估计学习多思考集成和坐标转换

获取原文
           

摘要

Sensory processing in the brain includes three key operations: multisensory integration—the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations—the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned—but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations.
机译:大脑中的感官加工包括三个关键操作:多思索集成 - 将线索与普通潜在刺激的单一估计结合成单一的估计的任务;坐标变换 - 通过关于干预变量(例如,凝视位置)的知识来实现​​参考帧的参考帧(例如,视网膜运动到身体中心);并纳入先前信息。统计上最佳的感觉处理要求每个操作中的每一个在刺激上保持正确的后部分布。在人类和其他动物的许多行为背景下已经证明了这种最优性的元素,这表明神经计算确实是最佳的。感觉方式之间的关系是复杂的,塑料进一步表明这些计算是学习的 - 但如何?通过将这些映射的收购作为密度估计的情况,我们提供了一个原则性的答案,在机器学习和统计中进行了良好的问题,其中观察到的数据的分布是在一组固定参数和a的方面建模的。潜伏变量集。在我们的情况下,观察到的数据是少发生群的活动,固定参数是突触连接,潜在变量是多思索人口的活动。特别是,我们训练一个限制的Boltzmann机器,具有生物合理的对比分歧规则,以了解之前未在单一方法下证明的一系列神经计算:最佳集成;编码前锋;提示的分层集成;没有融合的时候学习;并协调转型。该模型可以有关多用户陈述性质的可测试预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号