首页> 美国卫生研究院文献>PLoS Computational Biology >Learning Multisensory Integration and Coordinate Transformation via Density Estimation
【2h】

Learning Multisensory Integration and Coordinate Transformation via Density Estimation

机译:通过密度估计学习多传感器集成和坐标转换

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sensory processing in the brain includes three key operations: multisensory integration—the task of combining cues into a single estimate of a common underlying stimulus; coordinate transformations—the change of reference frame for a stimulus (e.g., retinotopic to body-centered) effected through knowledge about an intervening variable (e.g., gaze position); and the incorporation of prior information. Statistically optimal sensory processing requires that each of these operations maintains the correct posterior distribution over the stimulus. Elements of this optimality have been demonstrated in many behavioral contexts in humans and other animals, suggesting that the neural computations are indeed optimal. That the relationships between sensory modalities are complex and plastic further suggests that these computations are learned—but how? We provide a principled answer, by treating the acquisition of these mappings as a case of density estimation, a well-studied problem in machine learning and statistics, in which the distribution of observed data is modeled in terms of a set of fixed parameters and a set of latent variables. In our case, the observed data are unisensory-population activities, the fixed parameters are synaptic connections, and the latent variables are multisensory-population activities. In particular, we train a restricted Boltzmann machine with the biologically plausible contrastive-divergence rule to learn a range of neural computations not previously demonstrated under a single approach: optimal integration; encoding of priors; hierarchical integration of cues; learning when not to integrate; and coordinate transformation. The model makes testable predictions about the nature of multisensory representations.
机译:大脑中的感官处理包括三个关键操作:多感官整合-将线索结合到常见潜在刺激的单个估计中的任务;坐标转换-通过了解中间变量(例如凝视位置)而实现的刺激参考框架(例如,视网膜视点到以身体为中心)的变化;以及合并先前的信息。统计上最佳的感觉处理要求这些操作中的每一个都在刺激上保持正确的后验分布。在人类和其他动物的许多行为环境中已经证明了这种最优性的要素,这表明神经计算确实是最优的。感觉模态之间的关系是复杂的和可塑性的,这进一步表明这些计算是可以学习的,但是如何?通过将获取这些映射作为密度估计的情况,我们提供了一个有原则的答案,这是机器学习和统计学中一个经过充分研究的问题,其中,根据一组固定参数和一个潜在变量集。在我们的情况下,观察到的数据是单感觉种群活动,固定参数是突触连接,而潜在变量是多感觉种群活动。特别是,我们使用生物学上可行的对比散度规则训练受限的Boltzmann机器,以学习以前从未在单一方法下证明的一系列神经计算:最优积分;先验编码线索的分层集成;学习何时不整合;并协调转换。该模型对多感官表示的性质做出可检验的预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号