首页> 外文期刊>LIPIcs : Leibniz International Proceedings in Informatics >Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process on Undirected Graphs
【24h】

Faster Monte-Carlo Algorithms for Fixation Probability of the Moran Process on Undirected Graphs

机译:更快的Monte-Carlo算法,用于对未经向图的莫兰工艺的固定概率

获取原文
           

摘要

Evolutionary graph theory studies the evolutionary dynamics in a population structure given as a connected graph. Each node of the graph represents an individual of the population, and edges determine how offspring are placed. We consider the classical birth-death Moran process where there are two types of individuals, namely, the residents with fitness 1 and mutants with fitness r. The fitness indicates the reproductive strength. The evolutionary dynamics happens as follows: in the initial step, in a population of all resident individuals a mutant is introduced, and then at each step, an individual is chosen proportional to the fitness of its type to reproduce, and the offspring replaces a neighbor uniformly at random. The process stops when all individuals are either residents or mutants. The probability that all individuals in the end are mutants is called the fixation probability, which is a key factor in the rate of evolution. We consider the problem of approximating the fixation probability. The class of algorithms that is extremely relevant for approximation of the fixation probabilities is the Monte-Carlo simulation of the process. Previous results present a polynomial-time Monte-Carlo algorithm for undirected graphs when $r$ is given in unary. First, we present a simple modification: instead of simulating each step, we discard ineffective steps, where no node changes type (i.e., either residents replace residents, or mutants replace mutants). Using the above simple modification and our result that the number of effective steps is concentrated around the expected number of effective steps, we present faster polynomial-time Monte-Carlo algorithms for undirected graphs. Our algorithms are always at least a factor O(n^2/log n) faster as compared to the previous algorithms, where n is the number of nodes, and is polynomial even if r is given in binary. We also present lower bounds showing that the upper bound on the expected number of effective steps we present is asymptotically tight for undirected graphs.
机译:进化图理论研究了作为连接图所示的人口结构中的进化动态。图的每个节点代表了人口的个体,并且边缘决定了如何放置后代。我们考虑古典出生死亡莫兰工艺,其中有两种类型的个体,即居民,具有健身1和突变体的健身r。健身表明生殖强度。进化动力学发生如下:在初始步骤中,在所有驻留个体的群体中引入突变体,然后在每个步骤中,将个体与其类型的适应性成比例再现,并且后代替换了邻居随机均匀。所有个人都是居民或突变体的过程停止。末端所有人的概率是突变体的称为固定概率,这是进化速率的关键因素。我们考虑近似固定概率的问题。与固定概率近似的算法的类算法是该过程的Monte-Carlo模拟。以前的结果在r $在一元提供$ r $时,在多项式蒙特卡罗算法上呈现多项式蒙特卡罗算法。首先,我们提出了一个简单的修改:而不是模拟每个步骤,我们丢弃无效步骤,而不是节点改变类型(即,居民替代居民或突变体替代突变体)。使用上述简单修改和我们的结果,即有效步骤的数量集中在预期的有效步骤中,我们呈现更快的多项式Monte-Carlo算法进行无向图。与先前的算法相比,我们的算法总是至少一个因子O(n ^ 2 / log n),其中n是节点的数量,即使在二进制中给出r,也是多项式。我们还呈现下界,表明我们呈现的预期有效步骤的上限为无向图的渐近渐近。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号