首页> 外文期刊>FEBS Open Bio >Structural insights into the enhanced carbapenemase efficiency of OXA‐655 compared to OXA‐10
【24h】

Structural insights into the enhanced carbapenemase efficiency of OXA‐655 compared to OXA‐10

机译:与OXA-10相比,氧气-655的增强碳结构酶效率的结构见解

获取原文
           

摘要

Carbapenemases are the main cause of carbapenem resistance in Gram‐negative bacteria. How β‐lactamases with weak carbapenemase activity, such as the OXA‐10‐type class D β‐lactamases, contribute to anti‐bacterial drug resistance is unclear. OXA‐655 is a T26M and V117L OXA‐10 variant, recently identified from hospital wastewater. Despite exhibiting stronger carbapenemase activity towards ertapenem (ETP) and meropenem (MEM) in Escherichia?coli , OXA‐655 exhibits reduced activity towards oxyimino‐substituted β‐lactams like ceftazidime. Here, we have solved crystal structures of OXA‐10 in complex with imipenem (IPM) and ETP, and OXA‐655 in complex with MEM in order to unravel the structure–function relationship and the impact of residue 117 in enzyme catalysis. The new crystal structures show that L117 is situated at a critical position with enhanced Van der Waals interactions to L155 in the omega loop. This restricts the movements of L155 and could explain the reduced ability for OXA‐655 to bind a bulky oxyimino group. The V117L replacement in OXA‐655 makes the active site S67 and the carboxylated K70 more water exposed. This could affect the supply of new deacylation water molecules required for hydrolysis and possibly the carboxylation rate of K70. But most importantly, L117 leaves more space for binding of the hydroxyethyl group in carbapenems. In summary, the crystal structures highlight the importance of residue 117 in OXA‐10 variants for carbapenemase activity. This study also illustrates the impact of a single amino acid substitution on the substrate profile of OXA‐10 and the evolutionary potential of new OXA‐10 variants.
机译:碳结构酶是革兰氏阴性细菌耐羧烯抗性的主要原因。 β-内酰胺酶如何具有弱碳结构酶活性,例如Oxa-10型Dβ-内酰胺酶,有助于抗细菌耐药性尚不清楚。 Oxa-655是T26M和V117L Oxa-10变体,最近从医院废水中识别。尽管对大肠杆菌(ETP)和MEROPENEM(MEM)具有较强的碳碱酶活性,但大肠杆菌,OXA-655表现出氧气氨基取代的β-内酰胺等活性降低,如头孢他啶。在此,我们在含有亚胺(IPM)和ETP的复合物中溶解的氧气结构,以及与MEM复合物的Oxa-655,以解开结构功能关系和残留物117在酶催化中的影响。新的晶体结构表明,L117位于核心环路中的增强型van der Wa,与L155的临界位置处。这限制了L155的运动,并且可以解释氧气-655的能力降低,以结合粗氧氨基。氧气-655中的V117L更换使活性位点S67和羧化K70越来越多的水暴露。这可能影响水解所需的新脱酰水分子,并且可能是K70的羧化率。但最重要的是,L117留下了氨基蛋白羟乙基羟乙基的更多空间。总之,晶体结构突出了残留物117在碳结构酶活性的氧气-10变体中的重要性。该研究还说明了单个氨基酸取代对Oxa-10的基材轮廓和新的Oxa-10变体的进化潜力的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号